The Apical Domain Is Required and Sufficient for the First Lineage Segregation in the Mouse Embryo

被引:147
|
作者
Korotkevich, Ekaterina [1 ]
Niwayama, Ritsuya [1 ]
Courtois, Aurelien [1 ,5 ]
Friese, Stefanie [1 ]
Berger, Nicolas [2 ,3 ,4 ]
Buchholz, Frank [2 ,3 ,4 ]
Hiiragi, Takashi [1 ]
机构
[1] European Mol Biol Lab, Dev Biol Unit, D-69117 Heidelberg, Germany
[2] Tech Univ Dresden, UCC, Med Syst Biol, Univ Hosp, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Med Fac Carl Gustav Carus, D-01062 Dresden, Germany
[4] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
[5] RIKEN, Ctr Dev Biol, Kobe, Hyogo 6500047, Japan
基金
欧洲研究理事会;
关键词
INNER CELL MASS; PRIMITIVE ENDODERM; TROPHECTODERM; POLARITY; FATE; DIFFERENTIATION; POLARIZATION; BLASTOMERES; TRANSITION; COMPACTION;
D O I
10.1016/j.devcel.2017.01.006
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Mammalian development begins with segregation of the extra-embryonic trophectoderm from the embryonic lineage in the blastocyst. While cell polarity and adhesion play key roles, the decisive cue driving this lineage segregation remains elusive. Here, to study symmetry breaking, we use a reduced system in which isolated blastomeres recapitulate the first lineage segregation. We find that in the 8-cell stage embryo, the apical domain recruits a spindle pole to ensure its differential distribution upon division. Daughter cells that inherit the apical domain adopt trophectoderm fate. However, the fate of apolar daughter cells depends on whether their position within the embryo facilitates apical domain formation by Cdh1-independent cell contact. Finally, we develop methods for transplanting apical domains and show that acquisition of this domain is not only required but also sufficient for the first lineage segregation. Thus, we provide mechanistic understanding that reconciles previous models for symmetry breaking in mouse development.
引用
收藏
页码:235 / 247
页数:13
相关论文
共 50 条
  • [1] Lineage Segregation in the Totipotent Embryo
    Wu, Guangming
    Schoeler, Hans R.
    ESSAYS ON DEVELOPMENTAL BIOLOGY, PT B, 2016, 117 : 301 - +
  • [2] Totipotency and lineage segregation in the human embryo
    De Paepe, C.
    Krivega, M.
    Cauffman, G.
    Geens, M.
    Van de Velde, H.
    MOLECULAR HUMAN REPRODUCTION, 2014, 20 (07) : 599 - 618
  • [3] Building an apical domain in the early mouse embryo: Lessons, challenges and perspectives
    Zhu, Meng
    Zernicka-Goetz, Magdalena
    CURRENT OPINION IN CELL BIOLOGY, 2020, 62 : 144 - 149
  • [4] Foxd3 is required in the trophoblast progenitor cell lineage of the mouse embryo
    Tompers, DM
    Foreman, RK
    Wang, QH
    Kumanova, M
    Labosky, PA
    DEVELOPMENTAL BIOLOGY, 2005, 285 (01) : 126 - 137
  • [5] The canonical Hippo signalling pathway controls the first lineage segregation in the human preimplantation embryo
    Stamatiadis, P.
    Regin, M.
    De Munck, N.
    Tournaye, H.
    Sermon, K.
    De Velde, H. Van
    HUMAN REPRODUCTION, 2024, 39
  • [6] The TGFβ pathway plays a pivotal role in early embryo lineage segregation in both mouse and human
    Van der Jeught, M.
    Ghimire, S.
    O'Leary, T.
    Lierman, S.
    Deforce, D.
    Lopes, S. Chuva de Sousa
    Heindryckx, B.
    De Sutter, P.
    HUMAN REPRODUCTION, 2012, 27
  • [7] Position-and Hippo signaling -dependent plasticity during lineage segregation in the early mouse embryo
    Posfai, Eszter
    Petropoulos, Sophie
    de Barrosl, Flavia Regina Oliveira
    Schell, John Paul
    Jurisica, Igor
    Sandberg, Rickard
    Lanner, Fredrik
    Rossant, Janet
    ELIFE, 2017, 6
  • [8] Lineage specification in the mouse preimplantation embryo
    Chazaud, Claire
    Yamanaka, Yojiro
    DEVELOPMENT, 2016, 143 (07): : 1063 - 1074
  • [9] Lineage specification in the early mouse embryo
    Lanner, Fredrik
    EXPERIMENTAL CELL RESEARCH, 2014, 321 (01) : 32 - 39
  • [10] Lineage specificity of primary cilia in the mouse embryo
    Fiona K. Bangs
    Nadine Schrode
    Anna-Katerina Hadjantonakis
    Kathryn V. Anderson
    Nature Cell Biology, 2015, 17 : 113 - 122