3D-Printed Hydrogel Technologies for Tissue-Engineered Heart Valves

被引:24
|
作者
Hockaday, Laura Ann [1 ]
Duan, Bin [1 ]
Kang, Kevin Heeyong [2 ]
Butcher, Jonathan Talbot [1 ]
机构
[1] Cornell Univ, Dept Biomed Engn, 304 Weill Hall, Ithaca, NY 14850 USA
[2] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
VALVULAR ENDOTHELIAL-CELLS; SMOOTH-MUSCLE-CELLS; STEM-CELLS; FREEFORM FABRICATION; INTERSTITIAL-CELLS; SCAFFOLDS; REPLACEMENT; CONDUITS; GELATIN; CULTURE;
D O I
10.1089/3dp.2014.0018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Presented here is an overview of a 3D bioprinting approach that generates complex 3D geometry tissue constructs using extrudable materials and encapsulated cells based on native aortic valve tissue heterogeneity. As a fabrication strategy 3D printing overcomes the geometric limitations associated with classical heart valve tissue engineering scaffold assembly strategies. Experiments were conducted to establish photoencapsulation and fabrication parameter ranges tolerated by valve and mesenchymal stem cells, thereby enabling direct cell-hydrogel printing with optimal capacity for geometric control. Additionally, a dynamic conditioning system was designed specifically for the culture of 3D bioprinted valves. These studies indicate that bioprinted valves with encapsulated mesenchymal stem cells can be produced with high viability for the purposes of a tissue engineered heart valve or with primary aortic valve cells for the purpose of in vitro testing and mechanistic studies.
引用
收藏
页码:122 / 136
页数:15
相关论文
共 50 条
  • [1] Tissue-Engineered Heart Valves
    Filova, E.
    Straka, F.
    Mirejovsky, T.
    Masin, J.
    Bacakova, L.
    PHYSIOLOGICAL RESEARCH, 2009, 58 : S141 - S158
  • [2] TISSUE-ENGINEERED HEART VALVES WITH THE AUTOASSEMBLY METHOD
    Lepage, M-A.
    Ruel, J.
    Fradette, J.
    Laroche, G.
    Perron, J.
    Germain, L.
    Auger, F-A.
    CARDIOLOGY, 2017, 137 : 298 - 298
  • [3] Progress Toward Tissue-Engineered Heart Valves
    Mack, Michael
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2014, 63 (13) : 1330 - 1331
  • [4] Tissue-engineered heart valves: Bioreactor - yes or no?
    Dainese, Luca
    Barili, Fabio
    Biglioli, Paolo
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2008, 135 (05): : 1189 - 1190
  • [5] Bioactive Composite Methacrylated Gellan Gum for 3D-Printed Bone Tissue-Engineered Scaffolds
    D'Amora, Ugo
    Ronca, Alfredo
    Scialla, Stefania
    Soriente, Alessandra
    Manini, Paola
    Phua, Jun Wei
    Ottenheim, Christoph
    Pezzella, Alessandro
    Calabrese, Giovanna
    Raucci, Maria Grazia
    Ambrosio, Luigi
    NANOMATERIALS, 2023, 13 (04)
  • [6] Tissue-engineered valves
    Elkins, RC
    ANNALS OF THORACIC SURGERY, 2002, 74 (05): : 1434 - 1434
  • [7] Tissue-Engineered Heart Valves: A Call for Mechanistic Studies
    Blum, Kevin M.
    Drews, Joseph D.
    Breuer, Christopher K.
    TISSUE ENGINEERING PART B-REVIEWS, 2018, 24 (03) : 240 - 253
  • [8] Current Challenges in Translating Tissue-Engineered Heart Valves
    Stassen O.M.J.A.
    Muylaert D.E.P.
    Bouten C.V.C.
    Hjortnaes J.
    Current Treatment Options in Cardiovascular Medicine, 2017, 19 (9)
  • [9] Biomaterials and biofabrication strategies for tissue-engineered heart valves
    Mirani, Bahram
    Latifi, Neda
    Lecce, Monica
    Zhang, Xiaoqing
    Simmons, Craig A.
    MATTER, 2024, 7 (09) : 2896 - 2940
  • [10] A New Bioreactor for the Development of Tissue-Engineered Heart Valves
    Ruel, Jean
    Lachance, Genevieve
    ANNALS OF BIOMEDICAL ENGINEERING, 2009, 37 (04) : 674 - 681