Design and Implementation of an Optimal Energy Control System for Fixed-Wing Unmanned Aerial Vehicles

被引:13
|
作者
Lai, Ying-Chih [1 ]
Ting, Wen Ong [2 ]
机构
[1] Feng Chia Univ, Dept Aerosp & Syst Engn, 100 Wenhwa Rd, Taichung 407, Taiwan
[2] Natl Cheng Kung Univ, Inst Aeronaut & Astronaut Engn, 1 Daxue Rd, Tainan 701, Taiwan
来源
APPLIED SCIENCES-BASEL | 2016年 / 6卷 / 11期
关键词
total energy control system; hard-in-the-loop simulation; unmanned aerial vehicle; system identification; linear-quadratic-Gaussian regulator; FLIGHT; AUTOPILOT; GUIDANCE;
D O I
10.3390/app6110369
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In conventional flight control design, the autopilot and the autothrottle systems are usually considered separately, resulting in a complex system and inefficient integration of functions. Therefore, the concept of aircraft energy control is brought up to solve the problem of coordinated control using elevator and throttle. The goal of this study is to develop an optimal energy control system (OECS), based on the concept of optimal energy for fixed-wing unmanned aerial vehicles (UAVs). The energy of an aircraft is characterized by two parameters, which are specific energy distribution rate, driven by elevator, and total specific energy rate, driven by throttle. In this study, a system identification method was employed to obtain the energy model of a small UAV. The proposed approach consists of energy distribution loop and total energy loop. Energy distribution loop is designed based on linear-quadratic-Gaussian (LQG) regulator and is responsible for regulating specific energy distribution rate to zero. On the other hand, the total energy loop, based on simple gain scheduling method, is responsible for driving the error of total specific energy rate to zero. The implementation of OECS was successfully validated in the hard-in-the-loop (HIL) simulation of the applied UAV.
引用
下载
收藏
页数:24
相关论文
共 50 条
  • [1] A Trajectory Tracking Control Design for Fixed-wing Unmanned Aerial Vehicles
    Low, Chang Boon
    2010 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, 2010, : 2118 - 2123
  • [2] Experimental cooperative control of fixed-wing unmanned aerial vehicles
    Bayraktar, S
    Fainekos, GE
    Pappas, GJ
    2004 43RD IEEE CONFERENCE ON DECISION AND CONTROL (CDC), VOLS 1-5, 2004, : 4292 - 4298
  • [3] Robust Control for Underactuated Fixed-Wing Unmanned Aerial Vehicles
    Wang, Tianyi
    Zhang, Luxin
    Chen, Zhihua
    MATHEMATICS, 2024, 12 (07)
  • [4] Automatic tuning of attitude control system for fixed-wing unmanned aerial vehicles
    Poksawat, Pakorn
    Wang, Liuping
    Mohamed, Abdulghani
    IET CONTROL THEORY AND APPLICATIONS, 2016, 10 (17): : 2233 - 2242
  • [5] Inverse Optimal-Based Attitude Control for Fixed-Wing Unmanned Aerial Vehicles
    Le-Phan, Nhat-Minh
    Dinh, Dong Luc
    Duc, Anh Nguyen Duy
    Van, Nam Pham
    IEEE ACCESS, 2023, 11 : 52996 - 53005
  • [6] Formation Control of Fixed-wing Unmanned Aerial Vehicles with Input Constraint
    Liu Bojian
    Li Aijun
    Wang Changqing
    Li Jiawei
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2019, : 800 - 805
  • [7] On the Coordination of Constrained Fixed-Wing Unmanned Aerial Vehicles
    Jesus, Tales Argolo
    de Araujo Pimenta, Luciano Cunha
    Borges Torres, Leonardo Antonio
    Andrade Marcal Mendes, Eduardo Mazoni
    JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2013, 24 (05) : 585 - 600
  • [8] Collision Avoidance with Optimal Path Replanning of Fixed-Wing Unmanned Aerial Vehicles
    Ravichandran, Hariharan
    Hota, Sikha
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2021, 44 (11) : 2118 - 2125
  • [9] Control and navigation system for a fixed-wing unmanned aerial vehicle
    Zhai, Ruiyong
    Zhou, Zhaoying
    Zhang, Wendong
    Sang, Shengbo
    Li, Pengwei
    AIP ADVANCES, 2014, 4 (03)
  • [10] Disturbance Rejection Flight Control for Small Fixed-Wing Unmanned Aerial Vehicles
    Liu, Cunjia
    Chen, Wen-Hua
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2016, 39 (12) : 2804 - 2813