CLOSED-FORM EXPRESSIONS FOR THE MOMENTS OF THE BINOMIAL PROBABILITY DISTRIBUTION

被引:29
|
作者
Knoblauch, Andreas [1 ]
机构
[1] Honda Res Inst Europe, D-63073 Offenbach, Germany
关键词
Stirling numbers; Pochhammer polynomial; neural associative memory; storage capacity; retrieval errors;
D O I
10.1137/070700024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work develops closed-form expressions for the raw and central moments of the binomial probability distribution. For this I first derive a recursive formula for the raw moments from the moment generating function. Then it is shown that the recursion involved is essentially the same as for the Stirling numbers of the second kind. From this fact it is then possible to derive the closed formulae. Finally, I discuss an application of these formulae to the analysis of neural associative memory.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 50 条
  • [1] Closed-form expressions for the probability distribution of quantum walk on a line
    Mahesh N. Jayakody
    Eliahu Cohen
    [J]. The European Physical Journal D, 2023, 77
  • [2] Closed-form expressions for the probability distribution of quantum walk on a line
    Jayakody, Mahesh N.
    Cohen, Eliahu
    [J]. EUROPEAN PHYSICAL JOURNAL D, 2023, 77 (11):
  • [3] Closed-form expressions for moments of a class of beta generalized distributions
    Cordeiro, Gauss M.
    Nadarajah, Saralees
    [J]. BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2011, 25 (01) : 14 - 33
  • [4] Closed-Form Expression for the Poisson-Binomial Probability Density Function
    Fernandez, Manuel
    Williams, Stuart
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2010, 46 (02) : 803 - 817
  • [5] Closed Form expressions for moments of the beta Weibull distribution
    Cordeiro, Gauss M.
    Simas, Alexandre B.
    Stosic, Borko D.
    [J]. ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2011, 83 (02): : 357 - 373
  • [6] New closed-form efficient estimators for the negative binomial distribution
    Zhao, Jun
    Kim, Hyoung-Moon
    [J]. STATISTICAL PAPERS, 2023, 64 (06) : 2119 - 2135
  • [7] New closed-form efficient estimators for the negative binomial distribution
    Jun Zhao
    Hyoung-Moon Kim
    [J]. Statistical Papers, 2023, 64 : 2119 - 2135
  • [8] Closed-form expressions for Rician shadowed cumulative distribution function
    Paris, J. F.
    [J]. ELECTRONICS LETTERS, 2010, 46 (13) : 952 - U116
  • [9] Closed-form expressions for distribution of sum of exponential random variables
    Amari, SV
    Misra, RB
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 1997, 46 (04) : 519 - 522
  • [10] Closed-Form Expressions for the Matrix Exponential
    De Zela, F.
    [J]. SYMMETRY-BASEL, 2014, 6 (02): : 329 - 344