Embedding Meta Information into Visualizations

被引:0
|
作者
Hota, Alok [1 ]
Huang, Jian [1 ]
机构
[1] Univ Tennessee, Dept Elect Engn & Comp Sci, Knoxville, TN 37996 USA
基金
美国国家科学基金会;
关键词
Visualization; Watermarking; Data visualization; Metadata; Standards; Rendering (computer graphics); Digital images; Scientific visualization; reproducibility; visualization systems; digital image watermarking; COLOR IMAGE WATERMARKING; RESILIENT WATERMARKING; SCHEME; ROBUST; PROVENANCE; TRANSFORM; SCALE; FRAMEWORK; ROTATION; CODES;
D O I
10.1109/TVCG.2019.2916098
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this work, we study how to co-locate meta information with visualizations by directly embedding information into visualizations. This allows for visualizations to carry provenance and authorship information themselves for reproducibility. We call these self-describing visualizations-reproducible, authenticatable, and documentable. Self-describing visualizations can be used to extend existing visualization provenance systems. Herein, we start with a survey of existing digital image watermarking literature. We search for and classify watermarking algorithms that can support scientific visualizations. Using our payload-resilience testing framework, we evaluate and recommend algorithms supporting various use cases in the payload-resiliency space, and present guidelines for optimizing visualizations to improve payload capacities and embedding robustness. We demonstrate the efficacy of self-describing visualizations with two sample application implementations: (1) adding an embedding filter as a part the standard rendering pipeline, (2) creating a web reader to automatically and reliably extract provenance information from scientific publications for review and dissemination.
引用
收藏
页码:3189 / 3203
页数:15
相关论文
共 50 条
  • [1] Evaluating information visualizations
    Carpendale, Sheelagh
    INFORMATION VISUALIZATION: HUMAN-CENTERED ISSUES AND PERSPECTIVES, 2008, 4950 : 19 - 45
  • [2] MetaViz - A graphical meta-model instantiator for generating information dashboards and visualizations
    Vazquez-Ingelmo, Andrea
    Garcia-Penalvo, Francisco Jose
    Theron, Roberto
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) : 9977 - 9990
  • [3] Designing for Visualization in Motion: Embedding Visualizations in Swimming Videos
    Yao, Lijie
    Vuillemot, Romain
    Bezerianos, Anastasia
    Isenberg, Petra
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (03) : 1821 - 1836
  • [4] Joint Embedding of Meta-Path and Meta-Graph for Heterogeneous Information Networks
    Sun, Lichao
    He, Lifang
    Huang, Zhipeng
    Cao, Bokai
    Xia, Congying
    Wei, Xiaokai
    Yu, Philip S.
    2018 9TH IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (ICBK), 2018, : 131 - 138
  • [5] Attention Based Meta Path Fusion for Heterogeneous Information Network Embedding
    Ji, Houye
    Shi, Chuan
    Wang, Bai
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2018, 11012 : 348 - 360
  • [6] Weighted Meta-Path Embedding Learning for Heterogeneous Information Networks
    Zhang, Yongjun
    Yang, Xiaoping
    Wang, Liang
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT I, 2020, 12342 : 29 - 40
  • [7] Clustering via Meta-path Embedding for Heterogeneous Information Networks
    Zhang, Yongjun
    Yang, Xiaoping
    Wang, Liang
    11TH IEEE INTERNATIONAL CONFERENCE ON KNOWLEDGE GRAPH (ICKG 2020), 2020, : 188 - 194
  • [8] Exploring the Possibilities of Embedding Heterogeneous Data Attributes in Familiar Visualizations
    Loorak, Mona Hosseinkhani
    Perin, Charles
    Collins, Christopher
    Carpendale, Sheelagh
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 581 - 590
  • [9] Empirical evaluation of information visualizations: an introduction
    Chen, CM
    Czerwinski, MP
    INTERNATIONAL JOURNAL OF HUMAN-COMPUTER STUDIES, 2000, 53 (05) : 631 - 635
  • [10] Struggles and Strategies in Understanding Information Visualizations
    Rezaie, Maryam
    Tory, Melanie
    Carpendale, Sheelagh
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (06) : 3035 - 3048