Supervised machine learning based system for automatic fault-detection in water-quality sensors

被引:1
|
作者
Nair, Abhilash [1 ]
Weitzel, Jonas [1 ]
Hykkerud, Aleksander [2 ]
Ratnaweera, Harsha [2 ]
机构
[1] DOSCON AS, Proc Control, Oslo, Norway
[2] Norwegian Univ Life Sci, Fac Sci & Technol Realtek, As, Norway
关键词
fault detection; k-nearest neighbour; machine learning; water-quality monitoring; SOFT-SENSOR;
D O I
10.1109/ICSTCC55426.2022.9931788
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Online water-quality sensors installed in Wastewater Treatment Plants (WWTPs) are prone to process disturbances that generate erroneous data. Faulty sensor data can disrupt automation systems and result in sub-optimal performance of WWTPs. This paper presents a machine-learning-based system for real-time detection and the subsequent correction of faulty sensor data installed in a full-scale municipal WWTP. The fault detection system is developed by training a k-nearest neighbour (kNN) classifier with labelled historical data. The trained kNN classifier is then deployed in the WWTP's web-based Supervisory Control And Data Acquisition (SCADA) system to assess the performance in real-time. A qualitative comparison between raw and corrected sensor data demonstrates the system's potential to detect sensor faults and provide stable and reliable surrogate values.
引用
收藏
页码:64 / 67
页数:4
相关论文
共 50 条
  • [1] A Supervised Learning Approach to Water Quality Parameter Prediction and Fault Detection
    Joslyn, Kathleen
    Lipor, John
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2511 - 2514
  • [2] Model-based fault-detection of vehicle dynamics sensors
    Halbe, Iris
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2007, 55 (06) : 322 - 329
  • [3] MICROCOMPUTER-BASED FAULT-DETECTION USING REDUNDANT SENSORS
    POLENTA, HP
    RAY, A
    BERNARD, JA
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1988, 24 (05) : 905 - 912
  • [4] Multiswitch Fault-detection for VSI fed Multiphase Motor Drive Based on Machine Learning
    Chikondra, Bheemaiah
    Gonuguntla, Venkateswarlu
    Al Zaabi, Omar
    Behera, Ranjan Kumar
    Veluvolu, Kalyana C.
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS, PEDES, 2022,
  • [5] SOFTWARE QUALITY MEASUREMENT BASED ON FAULT-DETECTION DATA
    WEERAHANDI, S
    HAUSMAN, RE
    [J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1994, 20 (09) : 665 - 676
  • [6] A REVIEW OF SENSORS FOR REMOTE CONTINUOUS AUTOMATIC MONITORING OF WATER-QUALITY
    ARCHER, S
    [J]. CHEMISTRY & INDUSTRY, 1980, (15) : 613 - 617
  • [7] THE UNTERWESER AUTOMATIC WATER-QUALITY MEASUREMENT SYSTEM
    KUNZ, H
    [J]. WATER SCIENCE AND TECHNOLOGY, 1981, 13 (11-1) : 657 - 662
  • [8] Automatic arable land detection with supervised machine learning
    Arango, R. B.
    Diaz, I.
    Campos, A.
    Canas, E. R.
    Combarro, E. F.
    [J]. EARTH SCIENCE INFORMATICS, 2016, 9 (04) : 535 - 545
  • [9] Automatic arable land detection with supervised machine learning
    R. B. Arango
    I. Díaz
    A. Campos
    E. R. Canas
    E. F. Combarro
    [J]. Earth Science Informatics, 2016, 9 : 535 - 545
  • [10] Fall Detection with Supervised Machine Learning using Wearable Sensors
    Giuffrida, Davide
    Benetti, Guido
    De Martini, Daniele
    Facchinetti, Tullio
    [J]. 2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 253 - 259