Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2

被引:100
|
作者
Gleason, A. E. [1 ,2 ]
Bolme, C. A. [1 ]
Lee, H. J. [3 ]
Nagler, B. [3 ]
Galtier, E. [3 ]
Milathianaki, D. [3 ]
Hawreliak, J. [4 ]
Kraus, R. G. [5 ]
Eggert, J. H. [5 ]
Fratanduono, D. E. [5 ]
Collins, G. W. [5 ]
Sandberg, R. [6 ]
Yang, W. [7 ,8 ]
Mao, W. L. [2 ,9 ]
机构
[1] Los Alamos Natl Lab, Shock & Detonat Phys, Los Alamos, NM 87545 USA
[2] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
[3] SLAC Natl Accelerator Lab, Linac Coherent Light Source, Menlo Pk, CA 94025 USA
[4] Washington State Univ, Inst Shock Phys, Pullman, WA 99164 USA
[5] Lawrence Livermore Natl Lab, Shock Phys, Livermore, CA 94550 USA
[6] Los Alamos Natl Lab, Ctr Integrated Nanotechnol, Los Alamos, NM 87545 USA
[7] Carnegie Inst Sci, HPSynC, Argonne, IL 60439 USA
[8] Ctr High Pressure Sci & Technol Adv Res, Shanghai 201203, Peoples R China
[9] Stanford Univ, Geol Sci, Stanford, CA 94305 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
基金
美国国家科学基金会;
关键词
X-RAY-DIFFRACTION; HIGH-PRESSURE; WAVE COMPRESSION; POLYMORPHISM; STISHOVITE; KINETICS; SILICON; MATTER; GLASS; IRON;
D O I
10.1038/ncomms9191
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump-probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18GPa the nuclueation of stishovite appears to be kinetically limited to 1.4 +/- 0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low-and high-pressure states via XRD.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2
    A. E. Gleason
    C. A. Bolme
    H. J. Lee
    B. Nagler
    E. Galtier
    D. Milathianaki
    J. Hawreliak
    R. G. Kraus
    J. H. Eggert
    D. E. Fratanduono
    G. W. Collins
    R. Sandberg
    W. Yang
    W. L. Mao
    Nature Communications, 6
  • [2] Erratum: Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2
    A. E. Gleason
    C. A. Bolme
    H. J. Lee
    B. Nagler
    E. Galtier
    D. Milathianaki
    J. Hawreliak
    R. G. Kraus
    J. H. Eggert
    D. E. Fratanduono
    G. W. Collins
    R. Sandberg
    W. Yang
    W. L. Mao
    Nature Communications, 6
  • [3] Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2 (vol 6, 8191, 2015)
    Gleason, A. E.
    Bolme, C. A.
    Lee, H. J.
    Nagler, B.
    Galtier, E.
    Milathianaki, D.
    Hawreliak, J.
    Kraus, R. G.
    Eggert, J. H.
    Fratanduono, D. E.
    Collins, G. W.
    Sandberg, R.
    Yang, W.
    Mao, W. L.
    NATURE COMMUNICATIONS, 2015, 6
  • [4] Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2
    Shen Y.
    Jester S.B.
    Qi T.
    Reed E.J.
    Nature Materials, 2016, 15 (1) : 60 - 65
  • [5] Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2
    Shen, Yuan
    Jester, Shai B.
    Qi, Tingting
    Reed, Evan J.
    NATURE MATERIALS, 2016, 15 (01) : 60 - +
  • [6] Ultrafast structural response of shock-compressed plagioclase
    Gleason, Arianna E.
    Park, Sulgiye
    Rittman, Dylan R.
    Ravasio, Alessandra
    Langenhorst, Falko
    Bolis, Riccardo M.
    Granados, Eduardo
    Hok, Sovanndara
    Kroll, Thomas
    Sikorski, Marcin
    Weng, Tsu-Chien
    Lee, Hae Ja
    Nagler, Bob
    Sisson, Thomas
    Xing, Zhou
    Zhu, Diling
    Giuli, Gabriele
    Mao, Wendy L.
    Glenzer, Siegfried H.
    Sokaras, Dimosthenis
    Alonso-Mori, Roberto
    METEORITICS & PLANETARY SCIENCE, 2022, 57 (03) : 635 - 643
  • [7] Femtosecond Visualization of Lattice Dynamics in Shock-Compressed Matter
    Milathianaki, D.
    Boutet, S.
    Williams, G. J.
    Higginbotham, A.
    Ratner, D.
    Gleason, A. E.
    Messerschmidt, M.
    Seibert, M. M.
    Swift, D. C.
    Hering, P.
    Robinson, J.
    White, W. E.
    Wark, J. S.
    SCIENCE, 2013, 342 (6155) : 220 - 223
  • [8] Ab initio simulations of the electrical and optical properties of shock-compressed SiO2 -: art. no. 165108
    Laudernet, Y
    Clérouin, J
    Mazevet, S
    PHYSICAL REVIEW B, 2004, 70 (16) : 1 - 5
  • [9] Ultrafast x-ray Thomson scattering of shock-compressed matter
    Kritcher, Andrea L.
    Neumayer, Paul
    Castor, John
    Doppner, Tilo
    Falcone, Roger W.
    Landen, Otto L.
    Lee, Hae Ja
    Lee, Richard W.
    Morse, Edward C.
    Ng, Andrew
    Pollaine, Steve
    Price, Dwight
    Glenzer, Siegfried H.
    SCIENCE, 2008, 322 (5898) : 69 - 71
  • [10] Ultrafast infrared absorption and dynamic ellipsometry of shock-compressed energetic materials
    Moore, DS
    McGrane, SD
    Funk, DJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U316 - U316