Knot selection for regression splines via the LASSO

被引:0
|
作者
Osborne, MR [1 ]
Presnell, B [1 ]
Turlach, BA [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia
关键词
convex programming; dual problem; knot selection; regression splines;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Tibshirani (1996) proposes the "Least Absolute Shrinkage and Selection Operator" (lasso) as a method for regression estimation which combines features of shrinkage and variable selection. In this paper we present an algorithm that allows efficient calculation of the lasso estimator. In particular our algorithm can also be used when the number of variables exceeds the number of observations. This algorithm is then applied to the problem of knot selection for regression splines.
引用
收藏
页码:44 / 49
页数:6
相关论文
共 50 条
  • [2] Spatially adaptive regression splines and accurate knot selection schemes
    Zhou, SG
    Shen, XT
    [J]. DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 50 - 50
  • [3] Spatially adaptive regression splines and accurate knot selection schemes
    Zhou, SG
    Shen, XT
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) : 247 - 259
  • [4] Regression shrinkage and selection via the lasso: a retrospective
    Tibshirani, Robert
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 273 - 282
  • [5] Geometrically designed, variable knot regression splines
    Vladimir K. Kaishev
    Dimitrina S. Dimitrova
    Steven Haberman
    Richard J. Verrall
    [J]. Computational Statistics, 2016, 31 : 1079 - 1105
  • [6] Gene set selection via LASSO penalized regression ( SLPR)
    Frost, H. Robert
    Amos, Christopher I.
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (12)
  • [7] Geometrically designed, variable knot regression splines
    Kaishev, Vladimir K.
    Dimitrova, Dimitrina S.
    Haberman, Steven
    Verrall, Richard J.
    [J]. COMPUTATIONAL STATISTICS, 2016, 31 (03) : 1079 - 1105
  • [8] Regression coefficient and autoregressive order shrinkage and selection via the lasso
    Wang, Hansheng
    Li, Guodong
    Tsai, Chih-Ling
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2007, 69 : 63 - 78
  • [9] Nonparametric M-regression with free knot splines
    Stone, CJ
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 130 (1-2) : 183 - 206
  • [10] Knot selection for least-squares and penalized splines
    Spiriti, Steven
    Eubank, Randall
    Smith, Philip W.
    Young, Dennis
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (06) : 1020 - 1036