Feature Selection Using Chaotic Salp Swarm Algorithm for Data Classification

被引:61
|
作者
Hegazy, Ah. E. [1 ]
Makhlouf, M. A. [1 ,2 ]
El-Tawel, Gh. S. [1 ]
机构
[1] Suez Canal Univ, Fac Comp & Informat, Ismailia, Egypt
[2] Nahda Univ, Fac Comp & Informat, Bani Suwayf, Egypt
关键词
Feature selection; Salp swarm algorithm; Chaotic maps; Bio-inspired optimization; K-nearest neighbor; OPTIMIZATION; DESIGN;
D O I
10.1007/s13369-018-3680-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Salp swarm algorithm (SSA) is a recently created bio-inspired optimization algorithm presented in 2017 which is based on the swarming mechanism of salps. Despite high performance of SSA, slow convergence speed and getting stuck in local optima are two disadvantages of SSA. This paper introduces a novel chaotic SSA algorithm (CSSA) to avoid these weaknesses, where chaotic maps are used to enhance the performance of SSA algorithm. The CSSA algorithm is incorporated with the K-nearest neighbor classifier to solve the feature selection problem, in which twenty-seven datasets are used to assess the performance of CSSA algorithm. The results confirmed that the proposed chaotic SSA (especially Tent map) produced superior results compared to standard SSA and other optimization algorithms.
引用
收藏
页码:3801 / 3816
页数:16
相关论文
共 50 条
  • [1] Feature Selection Using Chaotic Salp Swarm Algorithm for Data Classification
    Ah. E. Hegazy
    M. A. Makhlouf
    Gh. S. El-Tawel
    [J]. Arabian Journal for Science and Engineering, 2019, 44 : 3801 - 3816
  • [2] A novel chaotic salp swarm algorithm for global optimization and feature selection
    Sayed, Gehad Ismail
    Khoriba, Ghada
    Haggag, Mohamed H.
    [J]. APPLIED INTELLIGENCE, 2018, 48 (10) : 3462 - 3481
  • [3] A novel chaotic salp swarm algorithm for global optimization and feature selection
    Gehad Ismail Sayed
    Ghada Khoriba
    Mohamed H. Haggag
    [J]. Applied Intelligence, 2018, 48 : 3462 - 3481
  • [4] Feature Selection Using Salp Swarm Algorithm with Chaos
    Ahmed, Sobhi
    Mafarja, Majdi
    Faris, Hossam
    Aljarah, Ibrahim
    [J]. ISMSI 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS, METAHEURISTICS & SWARM INTELLIGENCE, 2018, : 65 - 69
  • [5] VIGILANT SALP SWARM ALGORITHM FOR FEATURE SELECTION
    Arunekumar, N. B.
    Joseph, K. Suresh
    Viswanath, J.
    Anbarasi, A.
    Padmapriya, N.
    [J]. COMPUTING AND INFORMATICS, 2023, 42 (04) : 805 - 833
  • [6] Improved salp swarm algorithm for feature selection
    Hegazy, Ah. E.
    Makhlouf, M. A.
    El-Tawel, Gh. S.
    [J]. JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2020, 32 (03) : 335 - 344
  • [7] Dynamic Salp swarm algorithm for feature selection
    Tubishat, Mohammad
    Ja'afar, Salinah
    Alswaitti, Mohammed
    Mirjalili, Seyedali
    Idris, Norisma
    Ismail, Maizatul Akmar
    Omar, Mardian Shah
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 164
  • [8] bSSA: Binary Salp Swarm Algorithm With Hybrid Data Transformation for Feature Selection
    Shekhawat, Sayar Singh
    Sharma, Harish
    Kumar, Sandeep
    Nayyar, Anand
    Qureshi, Basit
    [J]. IEEE ACCESS, 2021, 9 : 14867 - 14882
  • [9] Adaptive Salp Swarm Algorithm as Optimal Feature Selection for Power Quality Disturbance Classification
    Chamchuen, Supanat
    Siritaratiwat, Apirat
    Fuangfoo, Pradit
    Suthisopapan, Puripong
    Khunkitti, Pirat
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (12):
  • [10] Feature selection via a multi-swarm salp swarm algorithm
    Wei, Bo
    Jin, Xiao
    Deng, Li
    Huang, Yanrong
    Wu, Hongrun
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (05): : 3588 - 3617