Controlling the switching field in nanomagnets by means of domain-engineered antiferromagnets

被引:9
|
作者
Folven, E. [1 ]
Linder, J. [2 ]
Gomonay, O. V. [3 ]
Scholl, A. [4 ]
Doran, A. [4 ]
Young, A. T. [4 ]
Retterer, S. T. [5 ]
Malik, V. K. [6 ]
Tybell, T. [1 ]
Takamura, Y. [6 ]
Grepstad, J. K. [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Elect & Telecommun, NO-7491 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Dept Phys, NO-7491 Trondheim, Norway
[3] Natl Tech Univ Ukraine, Inst Phys & Technol, UA-03056 Kiev, Ukraine
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[6] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
来源
PHYSICAL REVIEW B | 2015年 / 92卷 / 09期
基金
美国国家科学基金会;
关键词
EXCHANGE BIAS; THIN-FILMS; NANOSTRUCTURES; MAGNETIZATION; ANISOTROPY; ROTATION;
D O I
10.1103/PhysRevB.92.094421
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using soft x-ray spectromicroscopy, we investigate the magnetic domain structure in embedded nanomagnets defined in La0.7Sr0.3MnO3 thin films and LaFeO3/La0.7Sr0.3MnO3 bilayers. We find that shape-controlled antiferromagnetic domain states give rise to a significant reduction of the switching field of the rectangular nanomagnets. This is discussed within the framework of competition between an intrinsic spin-flop coupling and shape anisotropy. The data demonstrates that shape effects in antiferromagnets may be used to control the magnetic properties in nanomagnets.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Domain-engineered pyroelectric radiometer
    Lehman, J
    Eppeldauer, G
    Aust, JA
    Racz, M
    [J]. APPLIED OPTICS, 1999, 38 (34) : 7047 - 7055
  • [2] Progress in Domain-Engineered Photonics Materials
    Lu, Yalin
    Murata, Hiroshi
    Xu, Chang-Qing
    [J]. ADVANCES IN OPTOELECTRONICS, 2008, 2008
  • [3] Electro-optically controlled switching and deflection in domain-engineered LiNbO3
    Iodice, M
    Coppola, G
    Ferraro, P
    De Nicola, S
    Grilli, S
    Mazzotti, D
    De Natale, P
    [J]. INTEGRATED OPTICAL DEVICES: FABRICATION AND TESTING, 2002, 4944 : 254 - 261
  • [4] Controlling domain wall and field-free spin-orbit torque switching in synthetic antiferromagnets
    Zhao, Yuelei
    Yang, Sheng
    Wu, Kai
    Li, Xiaoguang
    Zhang, Xichao
    Li, Li
    Chu, Zhiqin
    Bi, Chong
    Zhou, Yan
    [J]. APPLIED PHYSICS LETTERS, 2022, 120 (22)
  • [5] Controlling the domain structure of antiferromagnets
    Donaldson, Laurie
    [J]. MATERIALS TODAY, 2022, 57 : 4 - 4
  • [6] Total internal reflection switching in electro-optically addressable domain-engineered LiNbO3
    Boyland, AJ
    Ross, GW
    Mailis, S
    Smith, PGR
    Eason, RW
    [J]. ELECTRONICS LETTERS, 2001, 37 (09) : 585 - 587
  • [7] Contribution to the measurement of the material constants on domain-engineered ferroelectric crystals
    Panos, S
    Panosová, D
    Erhart, J
    Sulc, M
    [J]. FERROELECTRICS, 2005, 319 : 135 - 144
  • [8] Optimised domain-engineered crystals for pure telecom photon sources
    Pickston, Alexander
    Graffitti, Francesco
    Barrow, Peter
    Morrison, Christopher L.
    Ho, Joseph
    Branczyk, Agata M.
    Fedrizzi, Alessandro
    [J]. OPTICS EXPRESS, 2021, 29 (05): : 6991 - 7002
  • [9] Nonlinear generation of an optical bottle beam in domain-engineered ferroelectric crystals
    Hu, Xiaokang
    Liu, Shan
    Xu, Tianxiang
    Sheng, Yan
    Zhao, Ruwei
    Krolikowski, Wieslaw
    [J]. OPTICS LETTERS, 2023, 48 (21) : 5527 - 5530
  • [10] Independent high-purity photons created in domain-engineered crystals
    Graffitti, Francesco
    Barrow, Peter
    Proietti, Massimiliano
    Kundys, Dmytro
    Fedrizzi, Alessandro
    [J]. OPTICA, 2018, 5 (05): : 514 - 517