Finite-difference approximation of a one-dimensional Hamilton-Jacobi/elliptic system arising in superconductivity

被引:1
|
作者
Briggs, AJ [1 ]
Claisse, JR [1 ]
Elliott, CM [1 ]
机构
[1] Univ Sussex, Ctr Math Anal & Its Applicat, Brighton BN1 9QH, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
Hamilton-Jacobi equation; elliptic-hyperbolic system; vortex density; evolution; superconductivity; finite difference schemes; viscosity solutions;
D O I
10.1093/imanum/22.1.89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite-difference approximations to an elliptic-hyperbolic system arising in vortex density models for type II superconductors are studied. The problem can be formulated as a non-local Hamilton-Jacobi equation on a bounded domain with zero Neumann boundary conditions. Monotone schemes are defined and shown to be stable. An L-infinity error bound is proved for the approximations of the unique viscosity solution.
引用
收藏
页码:89 / 131
页数:43
相关论文
共 50 条