Poisoning Attack in Federated Learning using Generative Adversarial Nets

被引:128
|
作者
Zhang, Jiale [1 ]
Chen, Junjun [2 ]
Wu, Di [3 ,4 ]
Chen, Bing [1 ]
Yu, Shui [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
[2] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[3] Univ Technol Sydney, Sch Software, Sydney, NSW 2007, Australia
[4] Univ Technol Sydney, Ctr Artificial Intelligence, Sydney, NSW 2007, Australia
基金
中国国家自然科学基金;
关键词
Federated learning; poisoning attack; generative adversarial nets; security; privacy;
D O I
10.1109/TrustCom/BigDataSE.2019.00057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is a novel distributed learning framework, where the deep learning model is trained in a collaborative manner among thousands of participants. The shares between server and participants are only model parameters, which prevent the server from direct access to the private training data. However, we notice that the federated learning architecture is vulnerable to an active attack from insider participants, called poisoning attack, where the attacker can act as a benign participant in federated learning to upload the poisoned update to the server so that he can easily affect the performance of the global model. In this work, we study and evaluate a poisoning attack in federated learning system based on generative adversarial nets (GAN). That is, an attacker first acts as a benign participant and stealthily trains a GAN to mimic prototypical samples of the other participants' training set which does not belong to the attacker. Then these generated samples will be fully controlled by the attacker to generate the poisoning updates, and the global model will be compromised by the attacker with uploading the scaled poisoning updates to the server. In our evaluation, we show that the attacker in our construction can successfully generate samples of other benign participants using GAN and the global model performs more than 80% accuracy on both poisoning tasks and main tasks.
引用
收藏
页码:374 / 380
页数:7
相关论文
共 50 条
  • [1] Detecting and mitigating poisoning attacks in federated learning using generative adversarial networks
    Zhao, Ying
    Chen, Junjun
    Zhang, Jiale
    Wu, Di
    Blumenstein, Michael
    Yu, Shui
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (07):
  • [2] PDGAN: A Novel Poisoning Defense Method in Federated Learning Using Generative Adversarial Network
    Zhao, Ying
    Chen, Junjun
    Zhang, Jiale
    Wu, Di
    Teng, Jian
    Yu, Shui
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING (ICA3PP 2019), PT I, 2020, 11944 : 595 - 609
  • [3] Federated Learning Backdoor Attack Scheme Based on Generative Adversarial Network
    Chen D.
    Fu A.
    Zhou C.
    Chen Z.
    Fu, Anmin (fuam@njust.edu.cn); Fu, Anmin (fuam@njust.edu.cn), 1600, Science Press (58): : 2364 - 2373
  • [4] Mitigating Poisoning Attack in Federated Learning
    Uprety, Aashma
    Rawat, Danda B.
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [5] Learning to Generate Chairs with Generative Adversarial Nets
    Zamyatin, Evgeny
    Filchenkov, Andrey
    7TH INTERNATIONAL YOUNG SCIENTISTS CONFERENCE ON COMPUTATIONAL SCIENCE, YSC2018, 2018, 136 : 200 - 209
  • [6] Learning Graph Representation With Generative Adversarial Nets
    Wang, Hongwei
    Wang, Jialin
    Wang, Jia
    Zhao, Miao
    Zhang, Weinan
    Zhang, Fuzheng
    Li, Wenjie
    Xie, Xing
    Guo, Minyi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (08) : 3090 - 3103
  • [7] Adversarial Poisoning Attacks on Federated Learning in Metaverse
    Aristodemou, Marios
    Liu, Xiaolan
    Lambotharan, Sangarapillai
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 6312 - 6317
  • [8] CLPA: Clean-Label Poisoning Availability Attacks Using Generative Adversarial Nets
    Zhao, Bingyin
    Lao, Yingjie
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9162 - 9170
  • [9] Deep Model Poisoning Attack on Federated Learning
    Zhou, Xingchen
    Xu, Ming
    Wu, Yiming
    Zheng, Ning
    FUTURE INTERNET, 2021, 13 (03)
  • [10] Understanding Distributed Poisoning Attack in Federated Learning
    Cao, Di
    Chang, Shan
    Lin, Zhijian
    Liu, Guohua
    Sunt, Donghong
    2019 IEEE 25TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2019, : 233 - 239