Efficient simulation of cardiac electrical propagation using high-order finite elements II: Adaptive p-version

被引:16
|
作者
Arthurs, Christopher J. [1 ]
Bishop, Martin J. [1 ,2 ]
Kay, David [1 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford OX1 3QD, England
[2] Kings Coll London, Dept Biomed Engn, London, England
基金
英国工程与自然科学研究理事会;
关键词
Adaptive finite element method; p-version; Monodomain simulation; Computational cardiology; Numerical efficiency; POSTERIORI ERROR ESTIMATION; ACTION-POTENTIAL DURATION; BIDOMAIN; MODEL; REPOLARIZATION; DEFIBRILLATION; HEART;
D O I
10.1016/j.jcp.2013.07.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a computationally efficient method of simulating cardiac electrical propagation using an adaptive high-order finite element method to automatically concentrate computational effort where it is most needed in space on each time-step. We drive the adaptivity using a residual-based error indicator, and demonstrate using norms of the error that the indicator allows us to control it successfully. Our results using two-dimensional domains of varying complexity demonstrate that significant improvements in efficiency are possible over the standard linear FEM in our single-thread studies, and our preliminary three-dimensional results suggest that improvements are also possible in 3D. We do not work in parallel or investigate the challenges for adaptivity such as dynamic load-balancing which are associated with parallelisation. However, based upon recent work demonstrating that in some circumstances and with moderate processor counts parallel h-adaptive methods are efficient, and upon the claim that p-adaptivity will outperform h-adaptivity, we argue that p-adaptivity should be investigated for efficiency in parallel for simulation on moderate numbers of processors. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:443 / 470
页数:28
相关论文
共 50 条
  • [1] Efficient simulation of cardiac electrical propagation using high order finite elements
    Arthurs, Christopher J.
    Bishop, Martin J.
    Kay, David
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (10) : 3946 - 3962
  • [2] Reducing spurious oscillations in discontinuous wave propagation simulation using high-order finite elements
    Mirbagheri, Y.
    Nahvi, H.
    Parvizian, J.
    Duester, A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (07) : 1640 - 1658
  • [3] Nonlinear magnetohydrodynamics simulation using high-order finite elements
    Sovinec, CR
    Glasser, AH
    Gianakon, TA
    Barnes, DC
    Nebel, RA
    Kruger, SE
    Schnack, DD
    Plimpton, SJ
    Tarditi, A
    Chu, MS
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (01) : 355 - 386
  • [4] Efficient visualization of high-order finite elements
    Remacle, Jean-Francois
    Chevaugeon, Nicolas
    Marchandise, Emilie
    Geuzaine, Christophe
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 69 (04) : 750 - 771
  • [5] SHAPE OPTIMIZATION USING ADAPTIVE HIGH-ORDER FINITE-ELEMENTS
    THANEDAR, P
    KING, R
    STRUCTURAL OPTIMIZATION, 1993, 6 (03): : 189 - 193
  • [6] Nonlinear extended magnetohydrodynamics simulation using high-order finite elements
    Sovinec, CR
    Schnack, DD
    Pankin, AY
    Brennan, DP
    Tian, H
    Barnes, DC
    Kruger, SE
    Held, ED
    Kim, CC
    Li, XS
    Kaushik, DK
    Jardin, SC
    SciDAC 2005: Scientific Discovery Through Advanced Computing, 2005, 16 : 25 - 34
  • [7] NUMERICAL MODELING OF ULTRASONIC WAVE-PROPAGATION USING THE EFFICIENT P-VERSION FINITE-ELEMENT METHOD
    ISSA, CA
    IYER, KS
    BALASUBRAMANIAM, K
    ULTRASONICS, 1994, 32 (01) : 13 - 20
  • [8] Analysis of high-order finite elements for convected wave propagation
    Beriot, Hadrien
    Gabard, Gwenael
    Perrey-Debain, Emmanuel
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 96 (11) : 665 - 688
  • [9] A new method for bone simulation using the p-version of the finite element methods
    Müller-Karger, C.M.
    Cerrolaza, M.
    Boletin Tecnico/Technical Bulletin, 2001, 39 (03): : 23 - 54
  • [10] Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping
    De Basabe, Jonas D.
    Sen, Mrinal K.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2010, 181 (01) : 577 - 590