Piezoelectric-driven droplet impact printing with an interchangeable microfluidic cartridge

被引:20
|
作者
Li, Baoqing [1 ,2 ]
Fan, Jinzhen [1 ]
Li, Jiannan [1 ]
Chu, Jiaru [2 ]
Pan, Tingrui [1 ]
机构
[1] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[2] Univ Sci & Technol China, Dept Precis Machinery & Precis Instrumentat, Hefei 230027, Anhui, Peoples R China
来源
BIOMICROFLUIDICS | 2015年 / 9卷 / 05期
基金
美国国家科学基金会;
关键词
POLYMERASE-CHAIN-REACTION; REAL-TIME; GENERATION; CHIP; ENCAPSULATION; GRADIENTS; CELLS;
D O I
10.1063/1.4928298
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Microfluidic impact printing has been recently introduced, utilizing its nature of simple device architecture, low cost, non-contamination, and scalable multiplexability and high throughput. In this paper, we have introduced an impact-based droplet printing platform utilizing a simple plug-and-play microfluidic cartridge driven by piezoelectric actuators. Such a customizable printing system allows for ultrafine control of droplet volume from picoliters (similar to 23 pl) to nanoliters (similar to 10 nl), a 500 fold variation. The high flexibility of droplet generation can be simply achieved by controlling the magnitude of actuation (e.g., driving voltage) and the waveform shape of actuation pulses, in addition to nozzle size restrictions. Detailed printing characterizations on these parameters have been conducted consecutively. A multiplexed impact printing system has been prototyped and demonstrated to provide the functions of single-droplet jetting and droplet multiplexing as well as concentration gradient generation. Moreover, a generic biological assay has also been tested and validated on this printing platform. Therefore, the microfluidic droplet printing system could be of potential value to establish multiplexed micro reactors for high-throughput life science applications. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Modelling on the droplet formation and optimizing of the microfluidic cartridge used for the microfluidic impact printing
    Mao, Yuxin
    Wang, Xiaojie
    Li, Xuan
    Li, Baoqing
    Chu, Jiaru
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2019, 29 (12)
  • [2] A Piezoelectric-driven Single-nozzle Dispenser for Liquid Droplet Jetting
    Ham, Young-Bog
    Seo, Woo-Suk
    Oh, Sung-Jin
    Park, Jung-Ho
    Yun, So-Nam
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2010, 57 (04) : 877 - 881
  • [3] Microfluidic bioanalysis cartridge with interchangeable microchannel separation components
    Taylor, MT
    Raisi, F
    Belgrader, P
    Pourahmadi, F
    Herr, AE
    Kintz, GA
    TRANSDUCERS '01: EUROSENSORS XV, DIGEST OF TECHNICAL PAPERS, VOLS 1 AND 2, 2001, : 1214 - 1217
  • [4] PIEZOELECTRIC-DRIVEN TURNTABLE WITH HIGH POSITIONING ACCURACY .2. RELIABILITY OF PIEZOELECTRIC-DRIVEN TURNTABLE
    TOJO, T
    SUGIHARA, K
    SAITO, S
    BULLETIN OF THE JAPAN SOCIETY OF PRECISION ENGINEERING, 1990, 24 (02): : 87 - 93
  • [5] A piezoelectric-driven inchworm locomotion device
    Lobontiu, N
    Goldfarb, M
    Garcia, E
    MECHANISM AND MACHINE THEORY, 2001, 36 (04) : 425 - 443
  • [6] A PIEZOELECTRIC-DRIVEN STEREOLITHOGRAPHY-FABRICATED MICROPUMP
    CARROZZA, MC
    CROCE, N
    MAGNANI, B
    DARIO, P
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 1995, 5 (02) : 177 - 179
  • [7] Additive Manufactured Piezoelectric-Driven Miniature Gripper
    Ferrara-Bello, C. Andres
    Tecpoyotl-Torres, Margarita
    Rodriguez-Fuentes, S. Fernanda
    MICROMACHINES, 2023, 14 (04)
  • [8] Positioning fault detection of a piezoelectric-driven microrobot
    Dumontier, F
    Santa, K
    Fatikow, S
    (SAFEPROCESS'97): FAULT DETECTION, SUPERVISION AND SAFETY FOR TECHNICAL PROCESSES 1997, VOLS 1-3, 1998, : 651 - 656
  • [9] A PIEZOELECTRIC-DRIVEN MICROPOSITIONER WITH MAGNETIC LOCKING MECHANISM
    WU, S
    NG, KW
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1991, 62 (01): : 93 - 95
  • [10] CALIBRATION OF PIEZOELECTRIC-DRIVEN MIRRORS FOR LASER RESONATORS
    VARWIG, RL
    SANDSTROM, RL
    WANG, CP
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1981, 52 (02): : 200 - 203