Spiral model, jamming percolation and glass-jamming transitions

被引:14
|
作者
Biroli, G. [1 ]
Toninelli, C. [2 ]
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] Univ Paris VI VII, Lab Probabilites & Modeles Aleatoires, CNRS, UMR 7599, F-75252 Paris 05, France
来源
EUROPEAN PHYSICAL JOURNAL B | 2008年 / 64卷 / 3-4期
关键词
D O I
10.1140/epjb/e2008-00029-9
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Spiral Model (SM) corresponds to a new class of kinetically constrained models introduced in joint works with Fisher [9,10] which provide the first example of finite dimensional models with an ideal glass-jamming transition. This is due to an underlying jamming percolation transition which has unconventional features: it is discontinuous (i.e. the percolating cluster is compact at the transition) and the typical size of the clusters diverges faster than any power law, leading to a Vogel-Fulcher-like divergence of the relaxation time. Here we present a detailed physical analysis of SM, see [6] for rigorous proofs.
引用
收藏
页码:567 / 572
页数:6
相关论文
共 50 条
  • [1] Spiral model, jamming percolation and glass-jamming transitions
    G. Biroli
    C. Toninelli
    The European Physical Journal B, 2008, 64 : 567 - 572
  • [2] Jamming percolation and glass transitions in lattice models
    Toninelli, C
    Biroli, G
    Fisher, DS
    PHYSICAL REVIEW LETTERS, 2006, 96 (03)
  • [3] Comment on "jamming percolation and glass transitions in lattice models"
    Jeng, M.
    Schwarz, J. M.
    PHYSICAL REVIEW LETTERS, 2007, 98 (12)
  • [4] Comment on "jamming percolation and glass transitions in lattice models" - Reply
    Toninelli, C.
    Biroli, G.
    Fisher, D. S.
    PHYSICAL REVIEW LETTERS, 2007, 98 (12)
  • [5] Glass and Jamming Transitions
    Biroli, Giulio
    GLASSES AND GRAINS, 2011, 61 : 41 - 76
  • [6] Jamming versus Glass Transitions
    Mari, Romain
    Krzakala, Florent
    Kurchan, Jorge
    PHYSICAL REVIEW LETTERS, 2009, 103 (02)
  • [7] Percolation and jamming transitions in particulate systems with and without cohesion
    Kovalcinova, L.
    Goullet, A.
    Kondic, L.
    PHYSICAL REVIEW E, 2015, 92 (03):
  • [8] Efficient d -dimensional molecular dynamics simulations for studies of the glass-jamming transition
    Hoy, Robert S.
    Interiano-Alberto, Kevin A.
    Physical Review E, 2022, 105 (05):
  • [9] Force distributions near jamming and glass transitions
    O'Hern, CS
    Langer, SA
    Liu, AJ
    Nagel, SR
    PHYSICAL REVIEW LETTERS, 2001, 86 (01) : 111 - 114
  • [10] On the Study of Jamming Percolation
    M. Jeng
    J. M. Schwarz
    Journal of Statistical Physics, 2008, 131 : 575 - 595