Assessing isotropy for spatial point processes

被引:29
|
作者
Guan, YT [1 ]
Sherman, M
Calvin, JA
机构
[1] Univ Miami, Dept Management Sci, Coral Gables, FL 33124 USA
[2] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
关键词
anisotropy; spatial point process; subsampling;
D O I
10.1111/j.1541-0420.2005.00436.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A common assumption while analyzing spatial point processes is direction invariance, i.e., isotropy. In this article, we propose a formal nonparametric approach to test for isotropy based on the asymptotic joint normality of the sample second-order intensity function. We derive an L-2 consistent subsampling estimator for the asymptotic covariance matrix of the sample second-order intensity function and use this to construct a test statistic with a chi(2) limiting distribution. We demonstrate the efficacy of the approach through simulation studies and an application to a desert plant data set, where our approach confirms suspected directional effects in the spatial distribution of the desert plant species.
引用
收藏
页码:119 / 125
页数:7
相关论文
共 50 条
  • [1] Assessing spatial isotropy
    Sherman, M
    Guan, YT
    Calvin, JA
    [J]. RECENT ADVANCES AND TRENDS IN NONPARAMETRIC STATISTICS, 2003, : 467 - 475
  • [2] Isotropy test for spatial point processes using stochastic reconstruction
    Wong, Ka Yiu
    Chiu, Sung Nok
    [J]. SPATIAL STATISTICS, 2016, 15 : 56 - 69
  • [3] Nonparametric isotropy test for spatial point processes using random rotations
    Fend, Chiara
    Redenbach, Claudia
    [J]. SPATIAL STATISTICS, 2024, 64
  • [4] Tests for isotropy in spatial point patterns - A comparison of statistical indices
    Rajala, T.
    Redenbach, C.
    Sarkka, A.
    Sormani, M.
    [J]. SPATIAL STATISTICS, 2022, 52
  • [5] Classification of spatial point processes
    Raghavan, N
    Goel, PK
    [J]. MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 112 - 116
  • [6] Spatial point processes in astronomy
    Babu, GJ
    Feigelson, ED
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1996, 50 (03) : 311 - 326
  • [7] Substationarity for spatial point processes
    Zhang, Tonglin
    Mateu, Jorge
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 171 : 22 - 36
  • [8] FILTERS FOR SPATIAL POINT PROCESSES
    Singh, Sumeetpal S.
    Vo, Ba-Ngu
    Baddeley, Adrian
    Zuyev, Sergei
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2009, 48 (04) : 2275 - 2295
  • [9] Spatial point processes and their applications
    Baddeley, Adrian
    [J]. STOCHASTIC GEOMETRY, 2007, 1892 : 1 - 75
  • [10] Transforming spatial point processes into Poisson processes
    Schoenberg, F
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 81 (02) : 155 - 164