A regeneration proof of the central limit theorem for uniformly ergodic Markov chains

被引:0
|
作者
Jasra, Ajay [2 ]
Yang, Chao [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/j.spl.2008.01.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let (X-n) be a Markov chain on measurable space (E, epsilon) with unique stationary distribution pi. Let h : E -> R be a measurable function with finite stationary mean pi (h) := integral(E) h(x)pi(dx). Ibragimov and Linnik [Ibragimov, I.A., Linnik, Y.V., 1971. Independent and Stationary Sequences of Random Variables. Wolter-Noordhoff, Groiningen] proved that if (X-n) is geometrically ergodic, then a central limit theorem (CLT) holds for h whenever pi(vertical bar h vertical bar(2+delta)) < infinity, delta > 0. Cogburn [Cogburn, R., 1972. The central limit theorem for Markov processes. In: Le Cam, L.E., Neyman, J., Scott, E.L. (Eds.), Proc. Sixth Ann. Berkley Symp. Math. Statist. and Prob., 2. pp. 485-512] proved that if a Markov chain is uniformly ergodic, with pi(h(2)) < infinity then a CLT holds for h. The first result was re-proved in Roberts and Rosenthal [Roberts, G.O., Rosenthal, J.S., 2004. General state space Markov chains and MCMC algorithms. Prob. Surveys 1, 20-71] using a regeneration approach; thus removing many of the technicalities of the original proof. This raised an open problem: to provide a proof of the second result using a regeneration approach. In this paper we provide a solution to this problem. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1649 / 1655
页数:7
相关论文
共 50 条