Application of Metabolic PET Imaging in Radiation Oncology

被引:17
|
作者
Zhu, Aizhi [1 ]
Marcus, David M. [2 ,3 ]
Shu, Hui-Kuo G. [2 ,3 ]
Shim, Hyunsuk [1 ,3 ]
机构
[1] Emory Univ, Dept Radiol & Imaging Sci, Sch Med, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Radiat Oncol, Sch Med, Atlanta, GA 30322 USA
[3] Emory Univ, Winship Canc Inst, Sch Med, Atlanta, GA 30322 USA
关键词
POSITRON-EMISSION-TOMOGRAPHY; CELL LUNG-CANCER; GROSS TUMOR VOLUME; HIGH-GRADE GLIOMAS; FDG-PET; PROSTATE-CANCER; ESOPHAGEAL CANCER; ANTI-1-AMINO-3-F-18-FLUOROCYCLOBUTANE-1-CARBOXYLIC ACID; C-11-METHIONINE PET; NEOADJUVANT THERAPY;
D O I
10.1667/RR2702.1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Positron emission tomography (PET) is a noninvasive imaging technique that provides functional or metabolic assessment of normal tissue or disease conditions and is playing an increasing role in cancer radiotherapy planning. F-18-Fluorodeoxyglucose PET imaging (FDG-PET) is widely used in the clinic for tumor imaging due to increased glucose metabolism in most types of tumors; its role in radiotherapy management of various cancers is reviewed. In addition, other metabolic PET imaging agents at various stages of preclinical and clinical development are reviewed. These agents include radiolabeled amino acids such as methionine for detecting increased protein synthesis, radiolabeled choline for detecting increased membrane lipid synthesis, and radiolabeled acetate for detecting increased cytoplasmic lipid synthesis. The amino acid analogs choline and acetate are often more specific to tumor cells than FDG, so they may play an important role in differentiating cancers from benign conditions and in the diagnosis of cancers with either low FDG uptake or high background FDG uptake. PET imaging with FDG and other metabolic PET imaging agents is playing an increasing role in complementary radiotherapy planning. (C) 2012 by Radiation Research Society
引用
收藏
页码:436 / 448
页数:13
相关论文
共 50 条
  • [1] Metabolic PET Imaging in Oncology
    Sai, Kiran Kumar Solingapuram
    Zachar, Zuzana
    Bingham, Paul M.
    Mintz, Akiva
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2017, 209 (02) : 270 - 276
  • [2] PET radiopharmaceuticals for metabolic imaging in oncology
    Wiebe, LI
    [J]. PET AND MOLECULAR IMAGING: STATE OF THE ART AND FUTURE PERSPECTIVES, 2004, 1264 : 53 - 76
  • [3] The Role of PET Imaging in Gynecologic Radiation Oncology
    Rao, Yuan James
    Grigsby, Perry W.
    [J]. PET CLINICS, 2018, 13 (02) : 225 - +
  • [4] Combined PET/MR Imaging for Radiation Oncology
    Thorwarth, D.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2014, 111 : S80 - S81
  • [5] PET-CT imaging in radiation oncology
    Oyen, W. J. G.
    [J]. EJC SUPPLEMENTS, 2009, 7 (02): : 7 - 7
  • [6] PITFALLS OF PET IMAGING FOR TARGET DEFINITION IN RADIATION ONCOLOGY
    Lee, J.
    Geets, X.
    Gregoire, V.
    Boll, A.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2008, 88 : S135 - S135
  • [7] Recent advances of PET imaging in clinical radiation oncology
    M. Unterrainer
    C. Eze
    H. Ilhan
    S. Marschner
    O. Roengvoraphoj
    N. S. Schmidt-Hegemann
    F. Walter
    W. G. Kunz
    P. Munck af Rosenschöld
    R. Jeraj
    N. L. Albert
    A. L. Grosu
    M. Niyazi
    P. Bartenstein
    C. Belka
    [J]. Radiation Oncology, 15
  • [8] Hypoxia PET/CT imaging: implications for radiation oncology
    Arabi, M.
    Piert, M.
    [J]. QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2010, 54 (05): : 500 - 509
  • [9] Recent advances of PET imaging in clinical radiation oncology
    Unterrainer, M.
    Eze, C.
    Ilhan, H.
    Marschner, S.
    Roengvoraphoj, O.
    Schmidt-Hegemann, N. S.
    Walter, F.
    Kunz, W. G.
    af Rosenschold, P. Munck
    Jeraj, R.
    Albert, N. L.
    Grosu, A. L.
    Niyazi, M.
    Bartenstein, P.
    Belka, C.
    [J]. RADIATION ONCOLOGY, 2020, 15 (01)
  • [10] MR-PET for radiation oncology: the imaging perspective
    Riklund, K.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2016, 119 : S57 - S58