Multifactor analysis of multiscaling in volatility return intervals

被引:38
|
作者
Wang, Fengzhong [1 ,2 ]
Yamasaki, Kazuko [1 ,2 ,3 ]
Havlin, Shlomo [1 ,2 ,4 ,5 ]
Stanley, H. Eugene [1 ,2 ]
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Tokyo Univ Informat Sci, Dept Environm Sci, Chiba 2658501, Japan
[4] Bar Ilan Univ, Dept Phys, IL-52900 Ramat Gan, Israel
[5] Bar Ilan Univ, Minerva Ctr, IL-52900 Ramat Gan, Israel
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 01期
关键词
econophysics; exponential distribution; optimisation; probability; risk analysis; stock markets; time series; STATISTICAL PROPERTIES; FLUCTUATIONS; MEMORY;
D O I
10.1103/PhysRevE.79.016103
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the volatility time series of 1137 most traded stocks in the U.S. stock markets for the two-year period 2001-2002 and analyze their return intervals tau, which are time intervals between volatilities above a given threshold q. We explore the probability density function of tau, P-q(tau), assuming a stretched exponential function, P-q(tau)similar to e(-tau gamma). We find that the exponent gamma depends on the threshold in the range between q=1 and 6 standard deviations of the volatility. This finding supports the multiscaling nature of the return interval distribution. To better understand the multiscaling origin, we study how gamma depends on four essential factors, capitalization, risk, number of trades, and return. We show that gamma depends on the capitalization, risk, and return but almost does not depend on the number of trades. This suggests that gamma relates to the portfolio selection but not on the market activity. To further characterize the multiscaling of individual stocks, we fit the moments of tau, mu(m)equivalent to <(tau/<tau >)(m)>(1/m), in the range of 10 <<tau ><= 100 by a power law, mu(m)similar to <tau >(delta). The exponent delta is found also to depend on the capitalization, risk, and return but not on the number of trades, and its tendency is opposite to that of gamma. Moreover, we show that delta decreases with increasing gamma approximately by a linear relation. The return intervals demonstrate the temporal structure of volatilities and our findings suggest that their multiscaling features may be helpful for portfolio optimization.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Multiscaling behavior in the volatility return intervals of Chinese indices
    Ren, Fei
    Zhou, Wei-Xing
    [J]. EPL, 2008, 84 (06)
  • [2] Indication of multiscaling in the volatility return intervals of stock markets
    Wang, Fengzhong
    Yamasaki, Kazuko
    Havlin, Shlomo
    Stanley, H. Eugene
    [J]. PHYSICAL REVIEW E, 2008, 77 (01):
  • [3] Volatility return intervals analysis of the Japanese market
    W.-S. Jung
    F. Z. Wang
    S. Havlin
    T. Kaizoji
    H.-T. Moon
    H. E. Stanley
    [J]. The European Physical Journal B, 2008, 62 : 113 - 119
  • [4] Volatility return intervals analysis of the Japanese market
    Jung, W. -S.
    Wang, F. Z.
    Havlin, S.
    Kaizoji, T.
    Moon, H. -T.
    Stanley, H. E.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2008, 62 (01): : 113 - 119
  • [5] Statistical regularities in the return intervals of volatility
    F. Wang
    P. Weber
    K. Yamasaki
    S. Havlin
    H. E. Stanley
    [J]. The European Physical Journal B, 2007, 55 : 123 - 133
  • [6] Statistical regularities in the return intervals of volatility
    Wang, F.
    Weber, P.
    Yamasaki, K.
    Havlin, S.
    Stanley, H. E.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2007, 55 (02): : 123 - 133
  • [7] Scaling and memory in the return intervals of realized volatility
    Ren, Fei
    Gu, Gao-Feng
    Zhou, Wei-Xing
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (22) : 4787 - 4796
  • [8] Multiscaling and clustering of volatility
    Pasquini, M
    Serva, M
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 269 (01) : 140 - 147
  • [9] Scaling and memory in volatility return intervals in financial markets
    Yamasaki, K
    Muchnik, L
    Havlin, S
    Bunde, A
    Stanley, HE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (26) : 9424 - 9428
  • [10] Modeling the Variance of Return Intervals Toward Volatility Prediction
    Sun, Yan
    Lian, Guanghua
    Lu, Zudi
    Loveland, Jennifer
    Blackhurst, Isaac
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2020, 41 (04) : 492 - 519