Material Flow Tracking for Various Tool Geometries During the Friction Stir Spot Welding Process

被引:22
|
作者
Lin, Yuan-Ching [1 ]
Liu, Ju-Jen [1 ,2 ]
Chen, Jiun-Nan [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 10673, Taiwan
[2] Lee Ming Inst Technol, Dept Chem & Mat Engn, Taipei 24352, Taiwan
关键词
friction stir spot welding; material flow; tool geometry;
D O I
10.1007/s11665-013-0680-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study applied powder-tracing techniques to mount Cu and W powders on A6061-T6 aluminum sheets to investigate the material flow mechanism of friction stir spot welding (FSSW) using various geometric tools. The experimental results showed that the geometry of the tools plays a crucial role and determines the entrances of material flow during FSSW. It was believed that instantaneous voids were filled up with material flow in all directions for triangular pins, and the voids were located at the pin bottom for cylindrical pins. In accordance with the plastic rule of material flow, the pressure gradient is the necessary condition to cause material flow during FSSW; therefore, the transient constraint space (TCS) is required to generate pressure in this space. Enlargement of the TCS accompanies the evolution of the stir zone (SZ). A generated void causes a steep pressure gradient, which is regarded as the entrance of material flow. A tool with screw threads causes downward driving force, which determines the intermixing behavior between the upper and lower sheets, and also affects the size of the SZs.
引用
收藏
页码:3674 / 3683
页数:10
相关论文
共 50 条
  • [1] Material Flow Tracking for Various Tool Geometries During the Friction Stir Spot Welding Process
    Yuan-Ching Lin
    Ju-Jen Liu
    Jiun-Nan Chen
    Journal of Materials Engineering and Performance, 2013, 22 : 3674 - 3683
  • [2] Material flow during friction stir spot welding
    Su, P
    Gerlich, A
    North, TH
    Bendzsak, GJ
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2006, 11 (01) : 61 - 71
  • [3] Material flow during friction stir spot welding
    Yang, Q.
    Mironov, S.
    Sato, Y. S.
    Okamoto, K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (16-17): : 4389 - 4398
  • [4] Material flow and intermixing during friction stir spot welding of steel
    Sarkar, R.
    Pal, T. K.
    Shome, M.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2016, 227 : 96 - 109
  • [5] Experimental investigation of material flow during friction stir spot welding
    Horie, S.
    Shinozaki, K.
    Yamamoto, M.
    North, T. H.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2010, 15 (08) : 666 - 670
  • [6] On Friction, Heat Input, and Material Flow Initiation during Friction Stir Welding: Tool and Process Optimization
    Hossfeld, Max
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2023, 7 (01):
  • [7] New method for investigating material flow during friction stir spot welding
    Sun, N.
    Zhou, H.
    North, T. H.
    Yin, Y. H.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2010, 15 (03) : 239 - 241
  • [8] Effect of Tool Geometry on Material Flow Behavior of Refill Friction Stir Spot Welding
    Shude Ji
    Yue Wang
    Zhengwei Li
    Yumei Yue
    Peng Chai
    Transactions of the Indian Institute of Metals, 2017, 70 : 1417 - 1430
  • [9] Effect of Tool Geometry on Material Flow Behavior of Refill Friction Stir Spot Welding
    Ji, Shude
    Wang, Yue
    Li, Zhengwei
    Yue, Yumei
    Chai, Peng
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2017, 70 (06) : 1417 - 1430
  • [10] Effect of tool eccentricity on the periodic material flow in friction stir welding process
    Su, Hao
    Chen, Ji
    Wu, Chuansong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 220