Extensions of representations of integral quadratic forms

被引:1
|
作者
Chan, Wai Kiu [2 ]
Kim, Byeong Moon [3 ]
Kim, Myung-Hwan [4 ]
Oh, Byeong-Kweon [1 ]
机构
[1] Sejong Univ, Dept Appl Math, Seoul 143747, South Korea
[2] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
[3] Kangnung Natl Univ, Dept Math, Kangwondo 210702, South Korea
[4] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
来源
RAMANUJAN JOURNAL | 2008年 / 17卷 / 01期
基金
美国国家科学基金会;
关键词
extension of representations; integral quadratic forms;
D O I
10.1007/s11139-007-9023-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N and M be quadratic Z-lattices, and K be a sublattice of N. A representation sigma : K -> M is said to be extensible to N if there exists a representation rho : N -> M such that rho vertical bar (K) =sigma. We prove in this paper a local- global principle for extensibility of representation, which is a generalization of the main theorems on representations by positive definite Z-lattices by Hsia, Kitaoka and Kneser (J. Reine Angew. Math. 301:132-141, 1978) and Jochner and Kitaoka (J. Number Theory 48:88-101, 1994). Applications to almost n-universal lattices and systems of quadratic equations with linear conditions are discussed.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 50 条