On oscillation of integro-differential equations

被引:1
|
作者
Grace, Said R. [1 ]
Zafer, Agacik [2 ]
机构
[1] Cairo Univ, Fac Engn, Dept Engn Math, Giza, Egypt
[2] Amer Univ Middle East, Fac Engn & Technol, Dept Math, Eqaila, Kuwait
关键词
Integro-differential equation; oscillation; singular; Volterra equation; VOLTERRA; BEHAVIOR;
D O I
10.3906/mat-1612-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the oscillatory behavior of solutions for integro-differential equations of the form x'(t) = e(t) - integral(t)(0) (t - s)(alpha-1) k(t,s) f (s,x(s))ds, t >= 0 where 0 < alpha < 1. Our method is based on the use of the beta function and asymptotic behavior of nonoscillatory solutions. An example is given to illustrate the main result. Equations of this form include Caputo type fractional differential equations, so the results are applicable to some fractional type differential equations as well.
引用
收藏
页码:204 / 210
页数:7
相关论文
共 50 条
  • [1] Oscillation of nonlinear delay integro-differential equations
    Bacova, Beatrix
    Olach, Rudolf
    CDDEA '06: PROCEEDINGS OF THE CONFERENCE ON DIFFERENTIAL AND DIFFERENCE EQUATIONS AND APPLICATIONS 2006, 2007, 38 : 1 - 10
  • [2] OSCILLATION PROPERTIES OF SOLUTIONS OF A CLASS OF INTEGRO-DIFFERENTIAL EQUATIONS
    BAINOV, DD
    MISHKIS, AD
    ZAHARIEV, AI
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1987, 37 (04) : 512 - 516
  • [3] Multi-term fractional oscillation integro-differential equations
    Phung, Tran Dinh
    Duc, Dinh Thanh
    Tuan, Vu Kim
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (04) : 1713 - 1733
  • [4] Multi-term fractional oscillation integro-differential equations
    Tran Dinh Phung
    Dinh Thanh Duc
    Vu Kim Tuan
    Fractional Calculus and Applied Analysis, 2022, 25 : 1713 - 1733
  • [5] Oscillation criteria for a certain class of fractional order integro-differential equations
    Asliyuce, Serkan
    Guvenilir, A. Feza
    Zafer, Agacik
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (02): : 199 - 207
  • [6] On integro-differential equations and their applications
    Volterra, V
    ACTA MATHEMATICA, 1912, 35 (04) : 295 - 355
  • [7] On the reduction of integro-differential equations
    Evans, Griffith C.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1914, 15 (1-4) : 477 - 496
  • [8] On Solvability of Integro-Differential Equations
    De Leon-Contreras, Marta
    Gyongy, Istvan
    Wu, Sizhou
    POTENTIAL ANALYSIS, 2021, 55 (03) : 443 - 475
  • [9] SYSTEM OF INTEGRO-DIFFERENTIAL EQUATIONS
    SUHADOLC, A
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (02) : 195 - &
  • [10] Nonlinear Integro-Differential Equations
    Mahdavi, S.
    Kajani, M. Tavassoli
    JOURNAL OF MATHEMATICAL EXTENSION, 2010, 4 (02) : 107 - 117