DEMAZURE MODULES AND WEYL MODULES: THE TWISTED CURRENT CASE

被引:19
|
作者
Fourier, Ghislain [1 ]
Kus, Deniz [1 ]
机构
[1] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
FINITE-DIMENSIONAL REPRESENTATIONS; CRYSTALS; FORMULA;
D O I
10.1090/S0002-9947-2013-05846-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study finite-dimensional respresentations of twisted current algebras and show that any graded twisted Weyl module is isomorphic to level one Demazure modules for the twisted affine Kac-Moody algebra. Using the tensor product property of Demazure modules, we obtain, by analyzing the fundamental Weyl modules, dimension and character formulas. Moreover, we prove that graded twisted Weyl modules can be obtained by taking the associated graded modules of Weyl modules for the loop algebra, which implies that its dimension and classical character are independent of the support and depend only on its classical highest weight. These results were previously known for untwisted current algebras and are new for all twisted types.
引用
收藏
页码:6037 / 6064
页数:28
相关论文
共 50 条
  • [1] Demazure and Weyl Modules for Hyperalgebras of Twisted Current Algebras
    Bianchi, A.
    Macedo, T.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (01): : 69 - 93
  • [2] Demazure and Weyl Modules for Hyperalgebras of Twisted Current Algebras
    A. Bianchi
    T. Macedo
    Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 69 - 93
  • [3] Generalized Weyl modules for twisted current algebras
    I. A. Makedonskyi
    E. B. Feigin
    Theoretical and Mathematical Physics, 2017, 192 : 1184 - 1204
  • [4] GENERALIZED WEYL MODULES FOR TWISTED CURRENT ALGEBRAS
    Makedonskyi, I. A.
    Feigin, E. B.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 192 (02) : 1184 - 1204
  • [5] ON DEMAZURE AND LOCAL WEYL MODULES FOR AFFINE HYPERALGEBRAS
    Bianchi, Angelo
    Macedo, Tiago
    Moura, Adriano
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 274 (02) : 257 - 303
  • [6] Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions
    Fourier, G.
    Littelmann, P.
    ADVANCES IN MATHEMATICS, 2007, 211 (02) : 566 - 593
  • [7] Weyl modules, Demazure modules and finite crystals for non-simply laced type
    Naoi, Katsuyuki
    ADVANCES IN MATHEMATICS, 2012, 229 (02) : 875 - 934
  • [8] Weyl, Demazure and fusion modules for the current algebra of s1r+1
    Chari, Vyjayanthi
    Loktev, Sergei
    ADVANCES IN MATHEMATICS, 2006, 207 (02) : 928 - 960
  • [9] Weyl modules for the twisted loop algebras
    Chari, Vyjayanthi
    Fourier, Ghislain
    Senesi, Prasad
    JOURNAL OF ALGEBRA, 2008, 319 (12) : 5016 - 5038
  • [10] TWISTED DEMAZURE MODULES, FUSION PRODUCT DECOMPOSITION AND TWISTED Q-SYSTEMS
    Kus, Deniz
    Venkatesh, R.
    REPRESENTATION THEORY, 2016, 20 : 94 - 127