BB-Tree: A main-memory index structure for multidimensional range queries

被引:9
|
作者
Sprenger, Stefan [1 ]
Schaefer, Patrick [1 ]
Leser, Ulf [1 ]
机构
[1] Humboldt Univ, Dept Comp Sci, Berlin, Germany
关键词
Multidimensional; Index Structure; Range Queries; Main-Memory;
D O I
10.1109/ICDE.2019.00143
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present the BB-Tree, a fast and space-efficient index structure for processing multidimensional workloads in main memory. It uses a k-ary search tree for pruning and searching while keeping all data in leaf nodes. It linearizes the inner search tree and manages it in a cache-optimized array, with occasional re-organizations when data changes. To reduce the frequency of re-organizations, the BB-Tree introduces a novel architecture for leaf nodes, called bubble buckets, which automatically morphs between different representations based on their fill degree and are thus able to buffer large numbers of insertions in-place. We compare the BB-Tree to scanning, main-memory variants of the R*-tree, the kd-tree, and the VA-file, and the PH-tree using workloads over real and synthetic data. The BB-Tree is the fastest index for range queries up to a selectivity of 20%, and achieves an exact-match query performance similar to that of the best point access method, and is the most space-efficient index structure.
引用
收藏
页码:1566 / 1569
页数:4
相关论文
共 50 条
  • [1] BLOCK: Efficient Execution of Spatial Range Queries in Main-Memory
    Olma, Matthaios
    Tauheed, Farhan
    Heinis, Thomas
    Ailamaki, Anastasia
    [J]. SSDBM 2017: 29TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, 2017,
  • [2] Towards Efficient Main-Memory Use For Optimum Tree Index Update
    Biveinis, Laurynas
    Saltenis, Simonas
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2008, 1 (02): : 1617 - 1622
  • [3] SIMD Acceleration for Main-Memory Index Structures - A Survey
    Wallewein-Eising, Marten
    Broneske, David
    Saake, Gunter
    [J]. BEYOND DATABASES, ARCHITECTURES AND STRUCTURES: FACING THE CHALLENGES OF DATA PROLIFERATION AND GROWING VARIETY, 2018, 928 : 105 - 119
  • [4] Performance evaluation of main-memory R-tree variants
    Hwang, SY
    Kwon, K
    Cha, SK
    Lee, BS
    [J]. ADVANCES IN SPATIAL AND TEMPORAL DATABASES, PROCEEDINGS, 2003, 2750 : 10 - 27
  • [5] The Adaptive Radix Tree: ARTful Indexing for Main-Memory Databases
    Leis, Viktor
    Kemper, Alfons
    Neumann, Thomas
    [J]. 2013 IEEE 29TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2013, : 38 - 49
  • [6] DimensionSlice: A main-memory data layout for fast scans of multidimensional data
    Suh, Ilhyun
    Chung, Yon Dohn
    [J]. INFORMATION SYSTEMS, 2020, 94
  • [7] Supporting multidimensional range queries in Hierarchically Distributed Tree
    Gu, Yunfeng
    Boukerche, Azzedine
    De Grande, Robson E.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2016, 28 (06): : 1848 - 1869
  • [8] Cache-Conscious Index Mechanism for Main-Memory Databases
    SUN Li-mei
    [J]. Wuhan University Journal of Natural Sciences, 2006, (01) : 309 - 312
  • [9] Index-Assisted Hierarchical Computations in Main-Memory RDBMS
    Brunel, Robert
    May, Norman
    Kemper, Alfons
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2016, 9 (12): : 1065 - 1076
  • [10] Morphtree: a polymorphic main-memory learned index for dynamic workloads
    Luo, Yongping
    Jin, Peiquan
    Chu, Zhaole
    Wang, Xiaoliang
    Yuan, Yigui
    Zhang, Zhou
    Luo, Yun
    Wu, Xufei
    Zou, Peng
    [J]. VLDB JOURNAL, 2024, 33 (04): : 1065 - 1084