Facile Synthesis of LiFePO4/C with High Tap-density as Cathode for High Performance Lithium Ion Batteries

被引:13
|
作者
Yao, Lei [1 ]
Wang, Yan [2 ]
Wu, Jinhua [1 ,3 ]
Xiang, Mingwu [1 ]
Li, Jianlong [1 ]
Wang, Boya [1 ]
Zhang, Yun [1 ]
Wu, Hao [1 ]
Liu, Heng [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Chengdu 610064, Peoples R China
[2] Southwest Univ Nationalities, Coll Comp Sci & Technol, Chengdu 610041, Peoples R China
[3] Sichuan Coll Architectural Technol, Dept Mat Engn, Deyang 618000, Peoples R China
来源
关键词
LiFePO4/C; FePO4 center dot 2H(2)O precursors; Fe3O4; lithium ion batteries; CARBON-COATED LIFEPO4; ELECTROCHEMICAL PERFORMANCE; SOLVOTHERMAL SYNTHESIS; POROUS LIFEPO4; MICROSPHERES; BEHAVIOR; STORAGE; OPTIMIZATION; COMPOSITES; ELECTRODE;
D O I
10.20964/2017.01.32
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
LiFePO4/C cathode materials with a high tap-density originated from FePO4 center dot 2H(2)O precursors were prepared via a high-temperature solid-phase carbothermic reduction using low-cost Ferroferric oxide (Fe3O4) and phosphoric acid (H3PO4) as reaction materials. The as-obtained precursors are consistent with FePO4 center dot 2H2O phase with a Pcab space group and no impurity peaks are detected by XRD. The FePO4 center dot 2H(2)O precursor prepared at 90 degrees C for 8 h and the corresponding LiFePO4/C composite show high tap-density of 1.45 g cm(-3) and 1.36 g cm(-3), respectively. The LiFePO4/C delivers a high initial discharge capacity of 159 mAh g(-1) at 0.1 degrees C. Meanwhile, an initial capacity of 95 mAh g(-1) and superior capacity retention of 96.3 % are retained after 70 cycles at a high rate of 10 degrees C.
引用
收藏
页码:206 / 217
页数:12
相关论文
共 50 条
  • [1] Synthesis of LiFePO4/C cathode materials with both high-rate capability and high tap density for lithium-ion batteries
    Lou, Xiaoming
    Zhang, Youxiang
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (12) : 4156 - 4160
  • [2] Facile synthesis and electrochemical properties of high tap density LiFePO4/C
    Wang, Xiaoyan
    Wen, Lizhi
    Zheng, Yi
    Liu, Hao
    Liang, Guangchuan
    IONICS, 2019, 25 (10) : 4589 - 4596
  • [3] Facile synthesis and electrochemical properties of high tap density LiFePO4/C
    Xiaoyan Wang
    Lizhi Wen
    Yi Zheng
    Hao Liu
    Guangchuan Liang
    Ionics, 2019, 25 : 4589 - 4596
  • [4] Facile synthesis of nanostructured LiFePO4/C cathode material for lithium-ion batteries
    Yang ZhanXu
    Qiao QingDong
    Kang XiaoXue
    Yang WenSheng
    CHINESE SCIENCE BULLETIN, 2012, 57 (32): : 4160 - 4163
  • [5] Facile synthesis of nanostructured LiFePO4/C cathode material for lithium-ion batteries
    YANG ZhanXu1
    2 State Key Laboratory of Chemical Resource Engineering
    Science Bulletin, 2012, (32) : 4160 - 4163
  • [6] Synthesis and characterization of high-density LiFePO4/C composites as cathode materials for lithium-ion batteries
    Chang, Zhao-Rong
    Lv, Hao-Jie
    Tang, Hong-Wei
    Li, Hua-Ji
    Yuan, Xiao-Zi
    Wang, Haijiang
    ELECTROCHIMICA ACTA, 2009, 54 (20) : 4595 - 4599
  • [7] Hydrothermal synthesis and performance of LiFePO4 cathode for lithium ion batteries
    Wu, Z.-J. (wooawt@163.com), 1600, Central South University of Technology (24):
  • [8] Facile synthesis of nanocrystalline LiFePO4/graphene composite as cathode material for high power lithium ion batteries
    Mo, Runwei
    Lei, Zhengyu
    Rooney, David
    Sun, Kening
    ELECTROCHIMICA ACTA, 2014, 130 : 594 - 599
  • [9] Synthesis and performance of high tap density LiFePO4/C cathode materials doped with copper ions
    Chang, Zhao-Rong
    Lv, Hao-Jie
    Tang, Hongwei
    Yuan, Xiao-Zi
    Wang, Haijiang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 501 (01) : 14 - 17
  • [10] Solvothermal synthesis of LiFePO4 nanorods as high-performance cathode materials for lithium ion batteries
    Wang, Yajing
    Zhu, Bo
    Wang, Yanming
    Wang, Fei
    CERAMICS INTERNATIONAL, 2016, 42 (08) : 10297 - 10303