We present three results concerning the construction of algebraic splines whose segments are singular cubic and admit a polynomial parameterization. We use the implicit expression of the cubic in barycentric coordinates. We choose each segment of the spline from a monoparametric family of cubic segments that interpolate an additional intermediate point. These splines are of class G 1 (continuous tangent line). We also give, sufficient conditions for the spline to be of class G 2; moreover, in certain cases, the curvature value in the connection points can be prescribed. Also, we offer a method for the design of concavity changing splines. (c) 2006 IMACS. Published by Elsevier B.V. All rights reserved.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South KoreaSeoul Natl Univ, Dept Naval Architecture & Ocean Engn, Seoul 151744, South Korea
Hur, Seok
Kim, Tae-wan
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Naval Architecture & Ocean Engn, Seoul 151744, South Korea
Seoul Natl Univ, Res Inst Marine Syst Engn, Seoul 151744, South KoreaSeoul Natl Univ, Dept Naval Architecture & Ocean Engn, Seoul 151744, South Korea
机构:
Univ Ljubljana, FMF, Ljubljana, Slovenia
Univ Ljubljana, IMFM, Ljubljana, Slovenia
Univ Primorska, PINT, Ljubljana, SloveniaUniv Ljubljana, FMF, Ljubljana, Slovenia
Jaklic, Gasper
Zagar, Emil
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, FMF, Ljubljana, Slovenia
Univ Ljubljana, IMFM, Ljubljana, SloveniaUniv Ljubljana, FMF, Ljubljana, Slovenia