TOWARD SUBJECTIVE VIOLENCE DETECTION IN VIDEOS

被引:0
|
作者
Peixoto, Bruno [1 ]
Lavi, Bahram [1 ]
Pereira Martin, Joao Paulo [1 ]
Avila, Sandra [1 ]
Dias, Zanoni [1 ]
Rocha, Anderson [1 ]
机构
[1] Univ Campinas Unicamp, Inst Comp, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
computer vision; violence classification; deep-learning; semantic concept detection; forensic computing; NETWORKS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Violence detection in videos aims to identify whether a violent action occurred within a video stream. Effective tools for intelligent video analysis are highly demanded, specially to determine violence in video streams. Such solution could have applications in detecting inappropriate behaviors in video feeds, aiding law-enforcement in forensic cases, protecting children from accessing inappropriate online content and helping parents making informed decisions about what their kids should watch. Prior art on violence detection, particularly recently proposed deep learning based ones, seeks to identify violence in videos as a whole, without considering breaking down the subject into some of its underlying concepts. In this paper, we explore a different methodology of violence detection, which relies upon two deep neural network (DNNs) frameworks to learn spatial-temporal information on video clips under different scenarios subjective- and conceptual-based. We leverage deep feature representations for each specific concept, and aggregate them by training a shallow neural network as a binary-classification problem to describe violence as a whole. Finally, we show that using more specific concepts is an intuitive and effective solution, besides being complementary to form a more robust definition of violence.
引用
收藏
页码:8276 / 8280
页数:5
相关论文
共 50 条
  • [1] MULTIMODAL VIOLENCE DETECTION IN VIDEOS
    Peixoto, Bruno
    Lavi, Bahram
    Bestagini, Paolo
    Dias, Zanoni
    Rocha, Anderson
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 2957 - 2961
  • [2] A dataset for automatic violence detection in videos
    Bianculli, Miriana
    Falcionelli, Nicola
    Sernani, Paolo
    Tomassini, Selene
    Contardo, Paolo
    Lombardi, Mara
    Dragoni, Aldo Franco
    DATA IN BRIEF, 2020, 33
  • [3] Human Violence Recognition and Detection in Surveillance Videos
    Bilinski, Piotr
    Bremond, Francois
    2016 13TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2016, : 30 - 36
  • [4] Bidirectional Convolutional LSTM for the Detection of Violence in Videos
    Hanson, Alex
    Koutilya, P. N. V. R.
    Krishnagopal, Sanjukta
    Davis, Larry
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 280 - 295
  • [5] Audiovisual Dependency Attention for Violence Detection in Videos
    Pang, Wenfeng
    Xie, Wei
    He, Qianhua
    Li, Yanxiong
    Yang, Jichen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4922 - 4932
  • [6] Federated Learning for Physical Violence Detection in Videos
    Silva, Victor E. de S.
    Lacerda, Tiago B.
    Miranda, Pericles B. C.
    Nascimento, Andre C. A.
    Furtado, Ana Paula C.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Autocorrelation of gradients based violence detection in surveillance videos
    Deepak, K.
    Vignesh, L. K. P.
    Chandrakala, S.
    ICT EXPRESS, 2020, 6 (03): : 155 - 159
  • [8] Violence Detection from Videos using HOG Features
    Das, Sunanda
    Sarker, Amlan
    Mahmud, Tareq
    2019 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL INFORMATION AND COMMUNICATION TECHNOLOGY (EICT), 2019,
  • [9] Detection of Violence in Cartoon Videos Using Visual Features
    Khalil, Tahira
    Bangash, Javed Iqbal
    Khan, Abdul Waheed
    Lashari, Saima Anwar
    Khan, Abdullah
    Ramli, Dzati Athiar
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 4962 - 4971
  • [10] Violence Detection in Videos Using Deep Learning: A Survey
    Kaur, Gurmeet
    Singh, Sarbjeet
    ADVANCES IN INFORMATION COMMUNICATION TECHNOLOGY AND COMPUTING, AICTC 2021, 2022, 392 : 165 - 173