THE COLLECTIONWISE HAUSDORFF PROPERTY OF PRODUCTS OF TWO OR THREE SUBSPACES OF ORDINALS

被引:0
|
作者
Hirata, Yasushi [1 ]
机构
[1] Univ Tsukuba, Grad Sch Math, Tsukuba 3058571, Japan
来源
HOUSTON JOURNAL OF MATHEMATICS | 2009年 / 35卷 / 03期
关键词
Product; ordinal; stationary set; Pressing Down Lemma; collectionwise Hausdorff; MILD NORMALITY; OMEGA(1); OMEGA(2)(1);
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that every finite power of omega(1) is hereditarily collectionwise Hausdorff [6], [2]. And it is easy to see that there is a subspace of (omega + 1) x (omega(1) + 1) which is not collectionwise Hausdorff. We will prove that every product space of two subspaces of ordinals is collectionwise Hausdorff, but there is a product space of three subspaces of ordinals which is not collectionwise Hausdorff.
引用
收藏
页码:891 / 901
页数:11
相关论文
共 50 条
  • [1] The hereditarily collectionwise Hausdorff property in products of ω1
    Hirata, Yasushi
    Kemoto, Nobuyuki
    Topology Proceedings, Vol 29, No 1, 2005, 2005, 29 (01): : 167 - 173
  • [2] Normal subspaces in products of two ordinals
    Kemoto, N
    Nogura, T
    Smith, KD
    Yajima, Y
    FUNDAMENTA MATHEMATICAE, 1996, 151 (03) : 279 - 297
  • [3] NORMALITY AND COLLECTIONWISE HAUSDORFF PROPERTY
    PRZYMUSINSKI, T
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (07): : A716 - A716
  • [4] Generalized paracompactness of subspaces in products of two ordinals
    Kemoto, N
    Tamano, KI
    Yajima, Y
    TOPOLOGY AND ITS APPLICATIONS, 2000, 104 (1-3) : 155 - 168
  • [5] COLLECTIONWISE HAUSDORFF PROPERTY IN PRODUCT SPACES
    PRZYMUSINSKI, T
    COLLOQUIUM MATHEMATICUM, 1976, 36 (01) : 49 - 56
  • [6] MOORE SPACES AND COLLECTIONWISE HAUSDORFF PROPERTY
    ALSTER, K
    POL, R
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 23 (11): : 1189 - 1192
  • [7] Metacompact subspaces of products of ordinals
    Fleissner, WG
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (01) : 293 - 301
  • [8] Dual properties of subspaces in products of ordinals
    Peng, Liang-Xue
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (14) : 2297 - 2303
  • [9] Star countable subspaces in products of ordinals
    Mou, Lei
    Huang, Yanhui
    TOPOLOGY AND ITS APPLICATIONS, 2023, 339
  • [10] STAR COUNTABILITY OF PRODUCTS OF SUBSPACES OF ORDINALS
    Mou, Lei
    Huang, Yanhui
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (03): : 667 - 676