The node based finite element method

被引:0
|
作者
Tsiboukis, TD [1 ]
机构
[1] Aristotelian Univ Salonika, Dept Elect & Comp Engn, GR-54006 Salonika, Greece
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
引用
收藏
页码:139 / 156
页数:18
相关论文
共 50 条
  • [1] The parallel mechanism of node-based seamless finite element method
    Nie, Y. F.
    Chang, S.
    Fan, X. K.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2007, 19 (02): : 135 - 143
  • [2] Generalized-node finite element method based on manifold concept
    Luan, Maotian
    Tian, Rong
    Yang, Qing
    Jisuan Jiegou Lixue Jiqi Yingyong/Journal of Computational Structural Mechanics and Applications, 2000, 17 (02): : 192 - 200
  • [3] The parallel mechanism of node-based seamless finite element method
    Nie, Y.F.
    Chang, S.
    Fan, X.K.
    CMES - Computer Modeling in Engineering and Sciences, 2007, 19 (02): : 135 - 143
  • [4] A VARIABLE NODE FINITE-ELEMENT METHOD
    MOSHER, MC
    JOURNAL OF COMPUTATIONAL PHYSICS, 1985, 57 (02) : 157 - 187
  • [5] A Novel Polygonal Finite Element Method: Virtual Node Method
    Tang, X. H.
    Zheng, C.
    Zhang, J. H.
    ISCM II AND EPMESC XII, PTS 1 AND 2, 2010, 1233 : 1082 - 1087
  • [6] A stable node-based smoothed finite element method for acoustic problems
    Wang, G.
    Cui, X. Y.
    Feng, H.
    Li, G. Y.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 297 : 348 - 370
  • [7] Topology Optimization Using Node-Based Smoothed Finite Element Method
    He, Z. C.
    Zhang, G. Y.
    Deng, L.
    Li, Eric
    Liu, G. R.
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2015, 7 (06)
  • [8] The Generalized Finite Element method on eight-node element meshes
    Peng, ZQ
    Tu, JW
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON STRUCTURAL ENGINEERING FOR YOUNG EXPERTS, VOLS 1 AND 2, 2004, : 258 - 263
  • [9] Development of a 4-node hybrid stress tetrahedral element using a node-based smoothed finite element method
    Choi, J. H.
    Lee, B. C.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (11) : 1711 - 1728
  • [10] Implementing the Node Based Smoothed Finite Element Method as User Element in Abaqus for Linear and Nonlinear Elasticity
    Kshrisagar, S.
    Francis, A.
    Yee, J. J.
    Natarajan, S.
    Lee, C. K.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2019, 61 (02): : 481 - 502