Superfluid density and quasi-long-range order in the one-dimensional disordered Bose-Hubbard model

被引:28
|
作者
Gerster, M. [1 ]
Rizzi, M. [2 ]
Tschirsich, F. [1 ]
Silvi, P. [1 ]
Fazio, R. [3 ,4 ,5 ]
Montangero, S. [1 ,6 ,7 ,8 ]
机构
[1] Univ Ulm, Inst Complex Quantum Syst, D-89069 Ulm, Germany
[2] Johannes Gutenberg Univ Mainz, Inst Phys, Staudingerweg 7, D-55099 Mainz, Germany
[3] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[4] Scuola Normale Super Pisa, NEST, Piazza Cavalieri 7, I-56126 Pisa, Italy
[5] Ist Nanosci CNR, I-56126 Pisa, Italy
[6] Univ Ulm, Ctr Integrated Quantum Sci & Technol IQST, D-89069 Ulm, Germany
[7] Univ Stuttgart, Stuttgart, Germany
[8] MPI Solid State Res, Berlin, Germany
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
关键词
Bose glass; disorder-driven phase transition; numerical simulation of quantum many-body systems; QUANTUM PHASE-TRANSITIONS; GLASS TRANSITION; LOCALIZATION; INSULATOR; SYSTEMS; BOSONS;
D O I
10.1088/1367-2630/18/1/015015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the equilibrium properties of the one-dimensional disordered Bose-Hubbard model by means of a gauge-adaptive tree tensor network variational method suitable for systems with periodic boundary conditions. We compute the superfluid stiffness and superfluid correlations close to the superfluid to glass transition line, obtaining accurate locations of the critical points. By studying the statistics of the exponent of the power-law decay of the correlation, we determine the boundary between the superfluid region and the Bose glass phase in the regime of strong disorder and in the weakly interacting region, not explored numerically before. In the former case our simulations are in agreement with previous Monte Carlo calculations.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Dissipation-induced long-range order in the one-dimensional Bose-Hubbard model
    Ribeiro, Afonso L. S.
    McClarty, Paul
    Ribeiro, Pedro
    Weber, Manuel
    PHYSICAL REVIEW B, 2024, 110 (11)
  • [2] Twisted superfluid phase in the extended one-dimensional Bose-Hubbard model
    Luehmann, Dirk-Soeren
    PHYSICAL REVIEW A, 2016, 94 (01)
  • [3] Properties of the superfluid in the disordered Bose-Hubbard model
    de Abreu, Bruno R.
    Ray, Ushnish
    Vitiello, Silvio A.
    Ceperley, David M.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [4] The one-dimensional extended Bose-Hubbard model
    Pai, RV
    Pandit, R
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-CHEMICAL SCIENCES, 2003, 115 (5-6): : 721 - 726
  • [5] The one-dimensional extended Bose-Hubbard model
    Ramesh V. Pai
    Rahul Pandit
    Journal of Chemical Sciences, 2003, 115 (5-6) : 721 - 726
  • [6] Superfluidity in the one-dimensional Bose-Hubbard model
    Kiely, Thomas G.
    Mueller, Erich J.
    PHYSICAL REVIEW B, 2022, 105 (13)
  • [7] Phases of the one-dimensional Bose-Hubbard model
    Kühner, TD
    Monien, H
    PHYSICAL REVIEW B, 1998, 58 (22) : R14741 - R14744
  • [8] Pseudogaps in one-dimensional models with quasi-long-range order
    Millis, AJ
    Monien, H
    PHYSICAL REVIEW B, 2000, 61 (18) : 12496 - 12502
  • [9] Superfluid-Mott insulator and superfluid-charge density wave transitions in a one-dimensional Bose-Hubbard model
    Inoue, Hitoshi
    PHYSICA B-CONDENSED MATTER, 2014, 443 : 120 - 124
  • [10] Using entanglement to discern phases in the disordered one-dimensional Bose-Hubbard model
    Goldsborough, Andrew M.
    Roemer, Rudolf A.
    EPL, 2015, 111 (02)