The chromokinesin Klp3a and microtubules facilitate acentric chromosome segregation

被引:13
|
作者
Karg, Travis [1 ]
Elting, Mary Williard [2 ]
Vicars, Hannah [1 ]
Dumont, Sophie [2 ,3 ]
Sullivan, William [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Mol Cell & Dev Biol, Santa Cruz, CA 95064 USA
[2] Univ Calif San Francisco, Dept Cell & Tissue Biol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA
来源
JOURNAL OF CELL BIOLOGY | 2017年 / 216卷 / 06期
基金
美国国家卫生研究院;
关键词
KINESIN-LIKE PROTEIN; DOUBLE-STRAND BREAK; DROSOPHILA-MELANOGASTER; MITOTIC SPINDLE; DNA-DAMAGE; GENOMIC INSTABILITY; EJECTION FORCES; CELLS; KINETOCHORE; ANAPHASE;
D O I
10.1083/jcb.201604079
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Although poleward segregation of acentric chromosomes is well documented, the underlying mechanisms remain poorly understood. Here, we demonstrate that microtubules play a key role in poleward movement of acentric chromosome fragments generated in Drosophila melanogaster neuroblasts. Acentrics segregate with either telomeres leading or lagging in equal frequency and are preferentially associated with peripheral bundled microtubules. In addition, laser ablation studies demonstrate that segregating acentrics are mechanically associated with microtubules. Finally, we show that successful acentric segregation requires the chromokinesin Klp3a. Reduced Klp3a function results in disorganized interpolar microtubules and shortened spindles. Normally, acentric poleward segregation occurs at the periphery of the spindle in association with interpolar microtubules. In klp3a mutants, acentrics fail to localize and segregate along the peripheral interpolar microtubules and are abnormally positioned in the spindle interior. These studies demonstrate an unsuspected role for interpolar microtubules in driving acentric segregation.
引用
收藏
页码:1597 / 1608
页数:12
相关论文
共 50 条
  • [1] The chromokinesin, KLP3A, drives mitotic spindle pole separation during prometaphase and anaphase and facilitates chromatid motility
    Kwon, M
    Morales-Mulia, S
    Brust-Mascher, I
    Rogers, GC
    Sharp, DJ
    Scholey, JM
    MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (01) : 219 - 233
  • [2] Expression and cDNA cloning of klp-12 gene encoding an ortholog of the chicken chromokinesin, mediating chromosome segregation in Caenorhabditis elegans
    Ali, MY
    Khan, MLA
    Shakir, MA
    Kobayashi, KF
    Nishikawa, K
    Siddiqui, SS
    JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2000, 33 (02): : 138 - 147
  • [3] A novel role for chromokinesin Kid in anaphase chromosome segregation
    Ohsugi, Miho
    Tokai-Nishizumi, Noriko
    Horiuchi, Yasuomi
    Yamamoto, Tadashi
    CELL STRUCTURE AND FUNCTION, 2004, 29 : 73 - 73
  • [4] A C-elegans chromokinesin required for chromosome segregation
    Powers, J
    Strome, S
    Saxton, W
    MOLECULAR BIOLOGY OF THE CELL, 1999, 10 : 371A - 371A
  • [5] A novel role for chromokinesin Kid in anaphase chromosome segregation
    Ohsugi, M
    Tokai-Nishiuzmi, N
    Yamamoto, T
    MOLECULAR BIOLOGY OF THE CELL, 2004, 15 : 377A - 377A
  • [6] A C-elegans ChromoKinesin required for chromosome segregation
    Powers, J
    Strome, S
    Saxton, W
    MOLECULAR BIOLOGY OF THE CELL, 2000, 11 : 81A - 81A
  • [7] A fission yeast chromokinesin balances spindle forces for chromosome segregation.
    Paluh, JL
    Cande, WZ
    MOLECULAR BIOLOGY OF THE CELL, 2000, 11 : 94A - 94A
  • [8] Alternative strategies to chromosome segregation in yeast by use of an essential multifunctional chromokinesin
    Paluh, JL
    Cande, WZ
    MOLECULAR BIOLOGY OF THE CELL, 2001, 12 : 178A - 178A
  • [9] Human chromokinesin KIF4A functions in chromosome condensation and segregation
    Mazumdar, M
    Sundareshan, S
    Misteli, T
    JOURNAL OF CELL BIOLOGY, 2004, 166 (05): : 613 - 620
  • [10] Pathogenic Mutations in the Chromokinesin KIF22 Disrupt Anaphase Chromosome Segregation
    Thompson, Alex F.
    Blackburn, Patrick R.
    Lian, Jane B.
    Klee, Eric W.
    Stumpff, Jason
    BIOPHYSICAL JOURNAL, 2021, 120 (03) : 289A - 290A