The structure of non-zero-sum stochastic games

被引:14
|
作者
Simon, Robert Samuel [1 ]
机构
[1] London Sch Econ, Dept Math, London WC2A 2AE, England
关键词
stochastic games; equilibria; orbits of discrete time dynamical systems; martingales; Markov chains; total variation; the structure theorem in game theory;
D O I
10.1016/j.aam.2006.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Strategies in a stochastic game are delta-perfect if the induced one-stage games have certain delta-equilibrium properties. In special cases the existence of delta-perfect strategies for all positive delta implies the existence of epsilon-equilibria for every positive epsilon. Using this approach we prove the existence of epsilon-equilibria for every positive epsilon for a special class of quitting games. The proof reveals that more general proofs for the existence of epsilon-equilibria in stochastic games must involve the topological structure of how the equilibria of one-stage games are related to changes in the payoffs. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条