A recovery-type error estimator for the extended finite element method based on singular plus smooth stress field splitting

被引:73
|
作者
Rodenas, J. J. [1 ]
Gonzalez-Estrada, O. A. [1 ]
Tarancon, J. E. [1 ]
Fuenmayor, F. J. [1 ]
机构
[1] Univ Politecn Valencia, Dept Ingn Mecan & Mat, CITV, Valencia 46022, Spain
关键词
extended finite element method; error estimation; superconvergent patch recovery; singular stress field; linear elastic fracture mechanics;
D O I
10.1002/nme.2313
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new stress recovery procedure that provides accurate estimations of the discretization error for linear elastic fracture mechanic problems analyzed with the extended finite element method (XFEM) is presented. The procedure is an adaptation of the superconvergent patch recovery (SPR) technique for the XFEM framework. It is based oil three fundamental aspects: (a) the use of a singular+smooth stress field decomposition technique involving the use of different recovery methods (or each field: standard SPR for the smooth field and reconstruction of the recovered singular field using the stress intensity factor K for the singular field: (b) direct calculation of smoothed stresses at integation points using conjoint polynomial enhancement and (c) assembly of patches with elements intersected by the crack using different stress interpolation polynomials at each side of the crack. The method was validated by testing it oil problems with an exact solution in mode I, mode II, and mixed mode and oil it problem without analytical solution. The results obtained showed the accuracy of the proposed error estimator. Copyright (c) 2008 John Wiley & Sons. Ltd.
引用
收藏
页码:545 / 571
页数:27
相关论文
共 50 条
  • [1] Efficient and accurate stress recovery procedure and a posteriori error estimator for the stable generalized/extended finite element method
    Lins, Rafael
    Proenca, Sergio Persival
    Duarte, C. Armando
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 119 (12) : 1279 - 1306
  • [2] Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity
    Octavio A. González-Estrada
    Sundararajan Natarajan
    Juan José Ródenas
    Hung Nguyen-Xuan
    Stéphane P. A. Bordas
    [J]. Computational Mechanics, 2013, 52 : 37 - 52
  • [3] Efficient recovery-based error estimation for the smoothed finite element method for smooth and singular linear elasticity
    Gonzalez-Estrada, Octavio A.
    Natarajan, Sundararajan
    Jose Rodenas, Juan
    Hung Nguyen-Xuan
    Bordas, Stephane P. A.
    [J]. COMPUTATIONAL MECHANICS, 2013, 52 (01) : 37 - 52
  • [4] An asymptotically exact finite element error estimator based on C1 stress recovery
    Pomeranz, SB
    Kirk, AW
    Baker, WD
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 154 (3-4) : 319 - 329
  • [5] Locally equilibrated stress recovery for goal oriented error estimation in the extended finite element method
    Gonzalez-Estrada, O. A.
    Rodenas, J. J.
    Bordas, S. P. A.
    Nadal, E.
    Kerfriden, P.
    Fuenmayor, F. J.
    [J]. COMPUTERS & STRUCTURES, 2015, 152 : 1 - 10
  • [6] Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method
    BAI YanHong
    WU YongKe
    XIE XiaoPing
    [J]. Science China Mathematics, 2016, 59 (09) : 1835 - 1850
  • [7] Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method
    Bai YanHong
    Wu YongKe
    Xie XiaoPing
    [J]. SCIENCE CHINA-MATHEMATICS, 2016, 59 (09) : 1835 - 1850
  • [8] Superconvergence and recovery type a posteriori error estimation for hybrid stress finite element method
    YanHong Bai
    YongKe Wu
    XiaoPing Xie
    [J]. Science China Mathematics, 2016, 59 : 1835 - 1850
  • [9] Error estimation for the polygonal finite element method for smooth and singular linear elasticity
    Gonzalez-Estrada, Octavio A.
    Natarajan, Sundararajan
    Jose Rodenas, Juan
    Bordas, Stephane P. A.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 92 : 109 - 119
  • [10] Recovery-based error estimator for the natural-convection problem based on penalized finite element method
    Li, Lulu
    Su, Haiyan
    Zhao, Jianping
    Feng, Xinlong
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (12) : 4850 - 4874