A CONSTRUCTION OF TRANSVERSELY NON-SIMPLE KNOT TYPES

被引:0
|
作者
Matsuda, Hiroshi [1 ]
机构
[1] Yamagata Univ, Dept Math Sci, Yamagata 9908560, Japan
关键词
Closed braid; contact structure; transverse knot; transversely non-simple; FLOER HOMOLOGY;
D O I
10.1142/S0218216512501088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For n = 1, 2 and 3, we construct a pair of transverse knots T-1 and T-2(n), in the standard contact 3-sphere, satisfying the following properties: (1) the topological knot type of T-1 is the same as that of T-2(n), (2) the self-linking number of T-1 is equal to that of T-2(n), (3) T-2(n) is obtained from a transverse knot T-2 by n stabilizations, and (4) T-1 is not transversely isotopic to T-2(n).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] SIMPLE FORMULATION OF A NON-SIMPLE MATERIAL
    KEARSLEY, EA
    JOURNAL OF RHEOLOGY, 1978, 22 (03) : 312 - 313
  • [2] THERMOSTATICS OF NON-SIMPLE MATERIALS
    SILHAVY, M
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1984, 34 (07) : 601 - 621
  • [3] On non-simple reflexive links
    Matsuda, H
    Ozawa, M
    Shimokawa, K
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2002, 11 (05) : 787 - 791
  • [4] On a criterion for the non-simple groups
    Turkin, WK
    Dubuque, PE
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES DE L URSS, 1938, 21 : 162 - 164
  • [5] NON-SIMPLE TRACIAL APPROXIMATION
    Fan, Qingzhai
    Fang, Xiaochun
    HOUSTON JOURNAL OF MATHEMATICS, 2011, 37 (04): : 1249 - 1263
  • [6] PERTURBATION BY NON-SIMPLE CONSTRAINTS
    DETTMAN, JW
    JOURNAL OF MATHEMATICS AND PHYSICS, 1964, 43 (04): : 304 - &
  • [7] NON-SIMPLE MAGNETIC ORDER FOR SIMPLE HAMILTONIANS
    RASTELLI, E
    TASSI, A
    REATTO, L
    PHYSICA B & C, 1979, 97 (01): : 1 - 24
  • [8] Non-simple localizations of finite simple groups
    Rodriguez, Jose L.
    Scherer, Jerome
    Viruel, Antonio
    JOURNAL OF ALGEBRA, 2006, 305 (02) : 765 - 774
  • [9] Simple and non-simple molecular electronic excitation
    Kasha, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U358 - U359
  • [10] A Small and Non-simple Geometric Transition
    Rossi, Michele
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (02)