Numerical Integration by the 2-Stage Diagonally Implicit Runge-Kutta Method for Electromagnetic Transient Simulations

被引:75
|
作者
Noda, Taku [1 ]
Takenaka, Kiyoshi [2 ]
Inoue, Toshio [2 ]
机构
[1] Cent Res Inst Elect Power Ind, Elect Power Engn Res Lab, Kanagawa 2400196, Japan
[2] Cent Res Inst Elect Power Ind, Syst Engn Res Lab, Tokyo 2018511, Japan
关键词
Electromagnetic transient analysis; integration (mathematics); numerical stability; power electronics; power semiconductor switches; power system simulation; power system transients; NETWORK-ANALYSIS; EMTP;
D O I
10.1109/TPWRD.2008.923397
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes applying the two-stage diagonally implicit Runge-Kutta (2S-DIRK) method of numerical integration to the calculation of electromagnetic transients (EMTs) in a power system. The accuracy and the numerical stability of 2S-DIRK are almost the same as those of the trapezoidal method, while 2S-DIRK does not produce sustained numerical oscillation due to a sudden change of an inductor current or a capacitor voltage unlike the trapezoidal method. First, this paper reviews the 2S-DIRK integration scheme and derives the 2S-DIRK formulas of inductors and capacitors for both linear and nonlinear cases. Then, analytical comparisons of 2S-DIRK with the trapezoidal, backward Euler, and Gear-Shichman methods are carried out, and numerical examples which verify the analytical comparisons are shown. Finally, 2S-DIRK is compared with critical damping adjustment (CDA) implemented in Electromagnetic Transients Program (EMTP) for some simulation cases.
引用
收藏
页码:390 / 399
页数:10
相关论文
共 50 条
  • [1] Variable Order/Step Integration by 3-stage Diagonally Implicit Runge-Kutta Method for Electromagnetic Transient Simulations
    Ye X.
    Tang Y.
    Song Q.
    Liu W.
    Lü G.
    Lu Y.
    [J]. Dianwang Jishu/Power System Technology, 2020, 44 (11): : 4047 - 4054
  • [2] Transient Stability Constrained Optimal Power Flow Using 2-Stage Diagonally Implicit Runge-Kutta Method
    Liu, P. F.
    Wei, H.
    Li, B.
    Zhou, B.
    [J]. 2013 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), 2013,
  • [3] A four-stage index 2 Diagonally Implicit Runge-Kutta method
    Williams, R
    Burrage, K
    Cameron, I
    Kerr, M
    [J]. APPLIED NUMERICAL MATHEMATICS, 2002, 40 (03) : 415 - 432
  • [4] 2-STAGE AND 3-STAGE DIAGONALLY IMPLICIT RUNGE-KUTTA NYSTROM METHODS OF ORDERS 3 AND 4
    SHARP, PW
    FINE, JM
    BURRAGE, K
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 1990, 10 (04) : 489 - 504
  • [5] MODIFIED DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS
    ZLATEV, Z
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (03): : 321 - 334
  • [6] Singly diagonally implicit Runge-Kutta methods with an explicit first stage
    Kværno, A
    [J]. BIT NUMERICAL MATHEMATICS, 2004, 44 (03) : 489 - 502
  • [7] Symplectic Partitioned Runge-Kutta And Symplectic Runge-Kutta Methods Generated By 2-Stage RadauIA Method
    Tan, Jiabo
    [J]. ADVANCES IN COMPUTATIONAL MODELING AND SIMULATION, PTS 1 AND 2, 2014, 444-445 : 633 - 636
  • [8] Symplectic Partitioned Runge-Kutta And Symplectic Runge-Kutta Methods Generated By 2-Stage LobattoIIIA Method
    Tan, Jiabo
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL AND INFORMATION SCIENCES (ICCIS 2014), 2014, : 1069 - 1073
  • [9] A Sixth Order Symmetric and Symplectic Diagonally Implicit Runge-Kutta Method
    Kalogiratou, Z.
    Monovasilis, Th
    Simos, T. E.
    [J]. INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 833 - 838
  • [10] DIAGONALLY IMPLICIT RUNGE-KUTTA METHODS FOR STIFF ODES
    ALEXANDER, R
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (06) : 1006 - 1021