Quantification of magnetic nanoparticles with low frequency magnetic fields: compensating for relaxation effects

被引:18
|
作者
Weaver, John B. [1 ,2 ,3 ,4 ]
Zhang, Xiaojuan [1 ,2 ]
Kuehlert, Esra [1 ,2 ]
Toraya-Brown, Seiko [5 ,6 ]
Reeves, Daniel B. [4 ]
Perreard, Irina M. [1 ,2 ]
Fiering, Steven [5 ,6 ]
机构
[1] Dartmouth Med Sch, Dept Radiol, Lebanon, NH 03756 USA
[2] Dartmouth Hitchcock Med Ctr, Lebanon, NH 03756 USA
[3] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
[4] Dartmouth Coll, Dept Phys, Hanover, NH 03755 USA
[5] Dartmouth Med Sch, Dept Microbiol & Immunol, Lebanon, NH 03756 USA
[6] Dartmouth Med Sch, Dept Genet, Lebanon, NH 03756 USA
关键词
AC;
D O I
10.1088/0957-4484/24/32/325502
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Quantifying the number of nanoparticles present in tissue is central to many in vivo and in vitro applications. Magnetic nanoparticles can be detected with high sensitivity both in vivo and in vitro using the harmonics of their magnetization produced in a sinusoidal magnetic field. However, relaxation effects damp the magnetic harmonics rendering them of limited use in quantification. We show that an accurate measure of the number of nanoparticles can be made by correcting for relaxation effects. Correction for relaxation reduced errors of 50% for larger nanoparticles in high relaxation environments to 2%. The result is a method of nanoparticle quantification suitable for in vivo and in vitro applications including histopathology assays, quantitative imaging, drug delivery and thermal therapy preparation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Relaxation of biofunctionalized magnetic nanoparticles in ultra-low magnetic fields
    Yang, H. C.
    Chiu, L. L.
    Liao, S. H.
    Chen, H. H.
    Horng, H. E.
    Liu, C. W.
    Liu, C. I.
    Chen, K. L.
    Chen, M. J.
    Wang, L. M.
    JOURNAL OF APPLIED PHYSICS, 2013, 113 (04)
  • [2] Quantification of low frequency magnetic fields generated by household appliances
    Tanaka, Kenji
    Mizuno, Yukio
    Naito, Katsuhiko
    IEEJ Transactions on Fundamentals and Materials, 2009, 129 (09) : 627 - 632
  • [3] Magnetic Nanoparticle Quantitation: Compensating for Relaxation Effects
    Weaver, J.
    Zhang, X.
    Toraya-Brown, S.
    Reeves, Daniel
    Perreard, Irina
    Fiering, S.
    MEDICAL PHYSICS, 2012, 39 (06) : 3927 - 3927
  • [4] Quantification of magnetic nanoparticles by compensating for multiple environment changes simultaneously
    Shi, Yipeng
    Jyoti, Dhrubo
    Gordon-Wylie, Scott W.
    Weaver, John B.
    NANOSCALE, 2020, 12 (01) : 195 - 200
  • [5] Low-Frequency Dynamic Magnetic Fields Decrease Cellular Uptake of Magnetic Nanoparticles
    Ivanova, Anna V.
    Chmelyuk, Nelly S.
    Nikitin, Aleksey A.
    Majouga, Alexander G.
    Chekhonin, Vladimir P.
    Abakumov, Maxim A.
    MAGNETOCHEMISTRY, 2024, 10 (02)
  • [6] Effects of low frequency magnetic fields on DNA synthesis
    Kanazawa Univ, Kanazawa, Japan
    IEEE Trans Magn, 5 pt 2 (5115-5117):
  • [7] Effects of low frequency magnetic fields on DNA synthesis
    Yamada, S
    Kawasaki, M
    Gunji, Y
    Ronan, P
    Harada, S
    Yamamoto, H
    IEEE TRANSACTIONS ON MAGNETICS, 1996, 32 (05) : 5115 - 5117
  • [8] Thermal relaxation rates of magnetic nanoparticles in the presence of magnetic fields and spin-transfer effects
    Rippard, William
    Heindl, Ranko
    Pufall, Matthew
    Russek, Stephen
    Kos, Anthony
    PHYSICAL REVIEW B, 2011, 84 (06):
  • [9] NUCLEAR TRANSVERSE RELAXATION IN MAGNETIC SUBSTANCES INDUCED BY LOW-FREQUENCY FIELDS
    BAKSHEYEV, NV
    LOGINOV, VM
    MUSHAILOV, ES
    TSIFRINOVICH, VI
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1983, 85 (03): : 962 - 966
  • [10] Concurrent quantification of magnetic nanoparticles temperature and relaxation time
    Shi, Yipeng
    Weaver, John B.
    MEDICAL PHYSICS, 2019, 46 (09) : 4070 - 4076