Ocean Acidification Refugia of the Florida Reef Tract

被引:113
|
作者
Manzello, Derek P. [1 ,2 ]
Enochs, Ian C. [1 ,2 ]
Melo, Nelson [1 ,2 ]
Gledhill, Dwight K. [3 ]
Johns, Elizabeth M. [2 ]
机构
[1] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Cooperat Inst Marine & Atmospher Studies, Miami, FL 33149 USA
[2] Natl Ocean & Atmospher Adm, Atlantic Oceanog & Meteorol Labs, Miami, FL USA
[3] Natl Ocean & Atmospher Adm, Ocean Acidificat Program, Silver Spring, MD USA
来源
PLOS ONE | 2012年 / 7卷 / 07期
基金
美国海洋和大气管理局;
关键词
CO2; ENRICHMENT; CORAL-REEFS; CARBONATE DISSOLUTION; SEAWATER; PHOTOSYNTHESIS; DISSOCIATION; MACROALGAE; SEDIMENTS; PACIFIC; ACID;
D O I
10.1371/journal.pone.0041715
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ocean acidification (OA) is expected to reduce the calcification rates of marine organisms, yet we have little understanding of how OA will manifest within dynamic, real-world systems. Natural CO2, alkalinity, and salinity gradients can significantly alter local carbonate chemistry, and thereby create a range of susceptibility for different ecosystems to OA. As such, there is a need to characterize this natural variability of seawater carbonate chemistry, especially within coastal ecosystems. Since 2009, carbonate chemistry data have been collected on the Florida Reef Tract (FRT). During periods of heightened productivity, there is a net uptake of total CO2 (TCO2) which increases aragonite saturation state (Omega(arag)) values on inshore patch reefs of the upper FRT. These waters can exhibit greater Omega(arag) than what has been modeled for the tropical surface ocean during preindustrial times, with mean (+/- std. error) Omega(arag)-values in spring = 4.69 (+/- 0.101). Conversely, Omega(arag)-values on offshore reefs generally represent oceanic carbonate chemistries consistent with present day tropical surface ocean conditions. This gradient is opposite from what has been reported for other reef environments. We hypothesize this pattern is caused by the photosynthetic uptake of TCO2 mainly by seagrasses and, to a lesser extent, macroalgae in the inshore waters of the FRT. These inshore reef habitats are therefore potential acidification refugia that are defined not only in a spatial sense, but also in time; coinciding with seasonal productivity dynamics. Coral reefs located within or immediately downstream of seagrass beds may find refuge from OA.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Ocean acidification enhances the bioerosion of a common coral reef sponge: implications for the persistence of the Florida Reef Tract
    Enochs, Ian C.
    Manzello, Derek P.
    Carlton, Renee D.
    Graham, Danielle M.
    Ruzicka, Rob
    Colella, Michael A.
    BULLETIN OF MARINE SCIENCE, 2015, 91 (02) : 271 - 290
  • [2] Ocean acidification refugia in variable environments
    Kapsenberg, Lydia
    Cyronak, Tyler
    GLOBAL CHANGE BIOLOGY, 2019, 25 (10) : 3201 - 3214
  • [3] Biotic habitats as refugia under ocean acidification
    Falkenberg, Laura J.
    Scanes, Elliot
    Ducker, James
    Ross, Pauline M.
    CONSERVATION PHYSIOLOGY, 2021, 9
  • [4] Seaweed farms provide refugia from ocean acidification
    Xiao, Xi
    Agusti, Susana
    Yu, Yan
    Huang, Yuzhou
    Chen, Weizhou
    Hu, Jing
    Li, Chao
    Li, Ke
    Wei, Fangyi
    Lu, Yitian
    Xu, Caicai
    Chen, Zepan
    Liu, Shengping
    Zeng, Jiangning
    Wu, Jiaping
    Duarte, Carlos M.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 776
  • [5] Ocean Acidification Accelerates Reef Bioerosion
    Wisshak, Max
    Schoenberg, Christine H. L.
    Form, Armin
    Freiwald, Andre
    PLOS ONE, 2012, 7 (09):
  • [6] Reef-coral refugia in a rapidly changing ocean
    Cacciapaglia, Chris
    van Woesik, Robert
    GLOBAL CHANGE BIOLOGY, 2015, 21 (06) : 2272 - 2282
  • [7] Seagrass meadows as ocean acidification refugia for sea urchin larvae
    Ravaglioli, C.
    De Marchi, L.
    Giannessi, J.
    Pretti, C.
    Bulleri, F.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 906
  • [8] Coral Reef Carbonate Chemistry Reveals Interannual, Seasonal, and Spatial Impacts on Ocean Acidification Off Florida
    Palacio-Castro, A. M.
    Enochs, I. C.
    Besemer, N.
    Boyd, A.
    Jankulak, M.
    Kolodziej, G.
    Hirsh, H. K.
    Webb, A. E.
    Towle, E. K.
    Kelble, C.
    Smith, I.
    Manzello, D. P.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2023, 37 (12)
  • [9] The exposure of the Great Barrier Reef to ocean acidification
    Mathieu Mongin
    Mark E. Baird
    Bronte Tilbrook
    Richard J. Matear
    Andrew Lenton
    Mike Herzfeld
    Karen Wild-Allen
    Jenny Skerratt
    Nugzar Margvelashvili
    Barbara J. Robson
    Carlos M. Duarte
    Malin S. M. Gustafsson
    Peter J. Ralph
    Andrew D. L. Steven
    Nature Communications, 7
  • [10] Ocean acidification impairs vermetid reef recruitment
    Milazzo, Marco
    Rodolfo-Metalpa, Riccardo
    Chan, Vera Bin San
    Fine, Maoz
    Alessi, Cinzia
    Thiyagarajan, Vengatesen
    Hall-Spencer, Jason M.
    Chemello, Renato
    SCIENTIFIC REPORTS, 2014, 4