Layers and spikes in non-homogeneous bistable reaction-diffusion equations

被引:11
|
作者
Ai, SB [1 ]
Chen, XF
Hastings, SP
机构
[1] Univ Alabama, Dept Math Sci, Huntsville, AL 35899 USA
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
D O I
10.1090/S0002-9947-06-03834-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study epsilon(2)(u) double over dot = f(u, x) = Au(1-u) (phi-u), where A = A(u, x) > 0, phi = phi(x) is an element of (0, 1), and epsilon > 0 is sufficiently small, on an interval [0, L] with boundary conditions (u) over dot = 0 at x = 0, L. All solutions with an e independent number of oscillations are analyzed. Existence of complicated patterns of layers and spikes is proved, and their Morse index is determined. It is observed that the results extend to f = A(u, x) (u - phi(-)) (u - phi) (u - phi(+)) with phi(-)(x) < phi(x) < phi(+)(x) and also to an infinite interval.
引用
收藏
页码:3169 / 3206
页数:38
相关论文
共 50 条
  • [1] BISTABLE REACTION-DIFFUSION EQUATIONS AND EXCITABLE MEDIA
    GARTNER, J
    MATHEMATISCHE NACHRICHTEN, 1983, 112 : 125 - 152
  • [2] Transition Layers for a Bistable Reaction-Diffusion Equation with Variable Diffusion
    Urano, Michio
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (01): : 21 - 49
  • [3] Transition fronts for periodic bistable reaction-diffusion equations
    Ding, Weiwei
    Hamel, Francois
    Zhao, Xiao-Qiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2517 - 2551
  • [4] NON EXISTENCE OF TRAVELING FRONTS SOLUTIONS FOR SOME BISTABLE REACTION-DIFFUSION EQUATIONS
    BERESTYCKI, H
    HAMEL, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1995, 321 (03): : 287 - 292
  • [5] Transition fronts for periodic bistable reaction-diffusion equations
    Weiwei Ding
    François Hamel
    Xiao-Qiang Zhao
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2517 - 2551
  • [6] Generalized Fronts in Reaction-Diffusion Equations with Bistable Nonlinearity
    Ya Qin SHU
    Wan Tong LI
    Nai Wei LIU
    ActaMathematicaSinica, 2012, 28 (08) : 1633 - 1646
  • [7] FRONT PROPAGATION FOR REACTION-DIFFUSION EQUATIONS OF BISTABLE TYPE
    BARLES, G
    BRONSARD, L
    SOUGANIDIS, PE
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (05): : 479 - 496
  • [8] Generalized Fronts in Reaction-Diffusion Equations with Bistable Nonlinearity
    Ya Qin SHU
    Wan Tong LI
    Nai Wei LIU
    Acta Mathematica Sinica,English Series, 2012, (08) : 1633 - 1646
  • [9] ASYMPTOTIC BEHAVIOR OF NONLOCAL BISTABLE REACTION-DIFFUSION EQUATIONS
    Besse, Christophe
    Capel, Alexandre
    Faye, Gregory
    Fouilhe, Guilhem
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (12): : 5967 - 5997
  • [10] Uniqueness of wave speeds in bistable reaction-diffusion equations
    Huang, Yanli
    Lin, Guo
    Pan, Shuxia
    APPLIED MATHEMATICS LETTERS, 2022, 125