Ceiling temperature distribution and smoke diffusion in tunnel fires with natural ventilation

被引:99
|
作者
Kashef, Ahmed [1 ]
Yuan, Zhongyuan [2 ]
Lei, Bo [2 ]
机构
[1] Natl Res Council Canada, Inst Res Construct, Ottawa, ON K1A 0R6, Canada
[2] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu, Peoples R China
关键词
Tunnel fire; Natural ventilation; Ceiling temperature distribution; Smoke diffusion distance; LONGITUDINAL VENTILATION; FLOW; VELOCITY;
D O I
10.1016/j.firesaf.2013.09.019
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A series of experimental tests was carried out in two 1/15 reduced-scale tunnels to investigate ceiling temperature distribution and smoke diffusion in tunnel fires with natural ventilation. Based on experimental results and the one-dimensional theory, formulas to predict the temperature distribution and smoke diffusion extent were developed. As the smoke was extracted through natural ventilation shafts, the tunnel was conceptually divided into two zones or sections: the fire and non-fire sections. In both sections, the smoke temperature can be expressed using the temperature decay formula and reference temperature formula. The temperature decay is an exponential function. The reference temperature in the fire section can be developed from the definition of the dimensionless temperature and a constant value that is different for different tunnels. The reference temperature in the non-fire section rep-resents the relationship between the dimensionless reference temperature in the non-fire section and a constant value that is different for different tunnels. The smoke diffusion area represents the relationship between the dimensionless length of the smoke layer and the temperature decay at the location of smoke. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [1] Smoke Diffusion Characteristics in Tunnel Fires using Natural Ventilation
    Yuan, Zhongyuan
    Lei, Bo
    Chen, Pengyun
    6TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATING AND AIR CONDITIONING, VOLS I-III, PROCEEDINGS, 2009, : 1265 - 1271
  • [2] Characterization of ceiling smoke temperature profile and maximum temperature rise induced by double fires in a natural ventilation tunnel
    Wang, Qiang
    Wang, Shaoming
    Liu, Huan
    Shen, Jiaying
    Shang, Fengju
    Shi, Congling
    Tang, Fei
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2020, 96
  • [3] Maximum temperature beneath the ceiling in tunnel fires with combination of ceiling mechanical smoke extraction and longitudinal ventilation
    Tang, F.
    Mei, F. Z.
    Wang, Q.
    He, Z.
    Fan, C. G.
    Tao, C. F.
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2017, 68 : 231 - 237
  • [4] Effect of longitudinal slope on the smoke propagation and ceiling temperature characterization in sloping tunnel fires under natural ventilation
    Gao, Zihe
    Li, Linjie
    Sun, Chaopeng
    Zhong, Wei
    Yan, Changbin
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2022, 123
  • [5] Water spray flow rate effect on smoke temperature distribution under the ceiling in tunnel fires with longitudinal ventilation
    Wang, Jie
    Xie, Zhicheng
    Lu, Kaihua
    Jiang, Xuepeng
    Zhang, Hongjie
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2018, 79 : 190 - 196
  • [6] On the maximum smoke temperature under the ceiling in tunnel fires
    Hu, L. H.
    Huo, R.
    Peng, W.
    Chow, W. K.
    Yang, R. X.
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2006, 21 (06) : 650 - 655
  • [7] The Effect of Fire Location on Smoke Temperature in Tunnel Fires with Natural Ventilation
    Yuan, Zhongyuan
    Lei, Bo
    Bi, Haiquan
    9TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING (ISHVAC) JOINT WITH THE 3RD INTERNATIONAL CONFERENCE ON BUILDING ENERGY AND ENVIRONMENT (COBEE), 2015, 121 : 2119 - 2124
  • [8] Study of slope effect on smoke back-layering length and ceiling temperature in tunnel fires under natural ventilation
    Wang, Peng
    She, Chaowen
    Chen, Junmin
    Xu, Zhijie
    Chen, Yanqiu
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 185
  • [9] Effect of lateral smoke extraction on transverse temperature distribution and smoke maximum temperature under ceiling in tunnel fires
    Yuantao Zhu
    Fei Tang
    Zunxin Zhao
    Qiang Wang
    Journal of Thermal Analysis and Calorimetry, 2022, 147 : 4275 - 4284
  • [10] Effect of lateral smoke extraction on transverse temperature distribution and smoke maximum temperature under ceiling in tunnel fires
    Zhu, Yuantao
    Tang, Fei
    Zhao, Zunxin
    Wang, Qiang
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2022, 147 (06) : 4275 - 4284