Robust estimation methods for a class of log-linear count time series models

被引:8
|
作者
Kitromilidou, Stella [1 ]
Fokianos, Konstantinos [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, Nicosia, Cyprus
关键词
autocorrelation; canonical link; conditionally unbiased bounded-influence estimator; interventions; log-linear Poisson model; Mallows quasi-likelihood estimator; tuning constant; simulation; POISSON AUTOREGRESSION; REGRESSION-MODELS; GARCH MODELS; INTERVENTIONS;
D O I
10.1080/00949655.2015.1035271
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study robust estimation of a log-linear Poisson model for count time series analysis. More specifically, we study robust versions of maximum likelihood estimators (MLEs) under three different forms of interventions: additive outliers (AOs), transient shifts (TSs) and level shifts (LSs). We estimate the parameters using the MLE, the conditionally unbiased bounded-influence estimator and the Mallows quasi-likelihood estimator and compare all three estimators in terms of their mean-square error, bias and mean absolute error. Our empirical results illustrate that under a LS or a TS there are no significant differences among the three estimators and the most interesting results are obtained in the presence of AOs. The results are complemented by a real data example.
引用
收藏
页码:740 / 755
页数:16
相关论文
共 50 条