A multigrid method for solving the Navier-Stokes/Boussinesq equations

被引:20
|
作者
Ben Cheikh, Nader [1 ]
Ben Beya, Brahim [1 ]
Lili, Taieb [1 ]
机构
[1] Fac Sci Tunis El Manar, Dept Phys, Lab Mecan Fluides, Tunis 1060, Tunisia
来源
关键词
finite-volume; multigrid; natural convection; projection method;
D O I
10.1002/cnm.980
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The present work investigates the efficiency and the accuracy of a multigrid (MG) technique for solving the Navier-Stokes/Boussinesq equations. In order to improve convergence, all accelerated full multigrid (AFMG) method with the iterative red and black successive over-relaxation smoother (RBSOR) is utilized. The AFMG method consists in introducing an accelerated parameter Gamma>0 in the standard full multigrid procedure (FMG). A well-known benchmark problem is used to demonstrate the effectiveness and the accuracy of the method. Solutions are compared with those of the literature and show excellent agreement. Results for Prandtl numbers Pr = 12.5, 6.8, 0.71 and 0.025 are also presented in this paper. It is observed that the mean heat transfer rate is minimum for Pr = 0.71 and maximum for Pr = 0.025. Copyright (C) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:671 / 681
页数:11
相关论文
共 50 条
  • [1] ON A LOCAL MULTIGRID MESH REFINEMENT METHOD FOR SOLVING NAVIER-STOKES EQUATIONS
    CALTAGIRONE, JP
    KHADRA, K
    ANGOT, P
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1995, 320 (06): : 295 - 302
  • [2] Multigrid method for the Euler and Navier-Stokes equations
    Demuren, AO
    Ibraheem, SO
    [J]. AIAA JOURNAL, 1998, 36 (01) : 31 - 37
  • [3] The Navier-Stokes-αβ equations as a platform for a spectral multigrid method to solve the Navier-Stokes equations
    Kim, Tae-Yeon
    Dolbow, John E.
    Fried, Eliot
    [J]. COMPUTERS & FLUIDS, 2011, 44 (01) : 102 - 110
  • [4] AN UPWIND METHOD FOR SOLVING NAVIER-STOKES EQUATIONS
    SCHRODER, W
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1988, 68 (05): : T355 - T357
  • [5] METHOD FOR NUMERICAL SOLVING OF NAVIER-STOKES EQUATIONS
    JAMET, P
    LASCAUX, P
    RAVIART, PA
    [J]. NUMERISCHE MATHEMATIK, 1970, 16 (02) : 93 - &
  • [6] AN APPROXIMATION METHOD FOR SOLVING NAVIER-STOKES EQUATIONS
    TEMAM, R
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1968, 96 (02): : 115 - +
  • [7] NUMERICAL-SOLUTION OF THE NAVIER-STOKES EQUATIONS BY A MULTIGRID METHOD
    CAMBIER, L
    COUAILLIER, V
    VEUILLOT, JP
    [J]. RECHERCHE AEROSPATIALE, 1988, (02): : 23 - 42
  • [8] Numerical solving of incompressible Navier-Stokes equations using an original local multigrid refinement method
    Vincent, S
    Caltagirone, JP
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 2000, 328 (01): : 73 - 80
  • [9] High-order compact projection method for solving unsteady Navier-Stokes/Boussinesq equations
    Liang, Xian
    Tian, Zhen-fu
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 990 - 995
  • [10] THE CONVERGENCE OF THE MULTIGRID ALGORITHM FOR NAVIER-STOKES EQUATIONS
    CHEN, ZX
    LI, KT
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1987, 5 (03) : 227 - 237