Microfluidic devices with permeable polymer barriers for capture and transport of biomolecules and cells

被引:11
|
作者
Lee, Ho Suk [1 ]
Chu, Wai Keung [2 ]
Zhang, Kun [2 ]
Huang, Xiaohua [2 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
关键词
FRACTIONATION; MONOLITHS; MEMBRANES; PROTEINS;
D O I
10.1039/c3lc50280e
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We report a method for fabricating permeable polymer microstructure barriers in polydimethylsiloxane (PDMS) microfluidic devices and the use of the devices to capture and transport DNA and cells. The polymer microstructure in a desired location in a fluidic channel is formed in situ by the polymerization of acrylamide and polyethylene diacrylate cross-linker (PEG-DA) monomer in a solution which is trapped in the location using a pair of PDMS valves. The porous polymer microstructure provides a mechanical barrier to convective fluid flow in the channel or between two microfluidic chambers while it still conducts ions or small charged species under an electric field, allowing for the rapid capture and transport of biomolecules and cells by electrophoresis. We have demonstrated the application of the devices for the rapid capture and efficient release of bacteriophage l genomic DNA, solution exchange and for the transport and capture of HeLa cells. Our devices will enable the multi-step processing of biomolecules and cells or individual cells within a single microfluidic chamber.
引用
收藏
页码:3389 / 3397
页数:9
相关论文
共 50 条
  • [1] Diffusion phenomena of cells and biomolecules in microfluidic devices
    Yildiz-Ozturk, Ece
    Yesil-Celiktas, Ozlem
    [J]. BIOMICROFLUIDICS, 2015, 9 (05):
  • [2] Microfluidic devices for terahertz spectroscopy of biomolecules
    George, Paul A.
    Hui, Wallace
    Rana, Farhan
    Hawkins, Benjamin G.
    Smith, A. Ezekiel
    Kirby, Brian J.
    [J]. OPTICS EXPRESS, 2008, 16 (03): : 1577 - 1582
  • [3] Adhesion-based capture and separation of cells for microfluidic devices
    Chang, WC
    Lee, LP
    Liepmann, D
    [J]. BIOMEMS AND BIONANOTECHNOLOGY, 2002, 729 : 155 - 160
  • [4] Polymer microfluidic devices
    Becker, H
    Locascio, LE
    [J]. TALANTA, 2002, 56 (02) : 267 - 287
  • [5] Cell transport via electromigration in polymer-based microfluidic devices
    Witek, MA
    Wei, SY
    Vaidya, B
    Adams, AA
    Zhu, L
    Stryjewski, W
    McCarley, RL
    Soper, SA
    [J]. LAB ON A CHIP, 2004, 4 (05) : 464 - 472
  • [6] Multivalent DNA Nanospheres for Enhanced Capture of Cancer Cells in Microfluidic Devices
    Sheng, Weian
    Chen, Tao
    Tan, Weihong
    Fan, Z. Hugh
    [J]. ACS NANO, 2013, 7 (08) : 7067 - 7076
  • [7] Rare cell capture in microfluidic devices
    Pratt, Erica D.
    Huang, Chao
    Hawkins, Benjamin G.
    Gleghorn, Jason P.
    Kirby, Brian J.
    [J]. CHEMICAL ENGINEERING SCIENCE, 2011, 66 (07) : 1508 - 1522
  • [8] Capture and release zones of permeable reactive barriers under the influence of advective-dispersive transport in the aquifer
    Klammler, Harald
    Hatfield, Kirk
    Mohamed, Mohamed M.
    Perminova, Irina V.
    Perlmutter, Mike
    [J]. ADVANCES IN WATER RESOURCES, 2014, 69 : 79 - 94
  • [9] Capture of esophageal and breast cancer cells with polymeric microfluidic devices for CTC isolation
    Ohnaga, Takashi
    Shimada, Yutaka
    Takata, Koji
    Obata, Tsutomu
    Okumura, Tomoyuki
    Nagata, Takuya
    Kishi, Hiroyuki
    Muraguchi, Atsushi
    Tsukada, Kazuhiro
    [J]. MOLECULAR AND CLINICAL ONCOLOGY, 2016, 4 (04) : 599 - 602
  • [10] Minimizing Stress Exposure to Cells Using Novel Microfluidic Cell Capture Devices
    Kijanka, G.
    Dimov, I. K.
    Burger, R.
    Ducree, J.
    [J]. MICRO-AND NANOSYSTEMS IN MEDICINE, ACTIVE IMPLANTS, BIOSENSORS, 2009, 25 (08): : 343 - 346