Weak Values are Universal in Von Neumann Measurements

被引:38
|
作者
Dressel, Justin [1 ]
Jordan, Andrew N. [1 ]
机构
[1] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
基金
美国国家科学基金会;
关键词
REALIZATION; PARTICLE; SPIN;
D O I
10.1103/PhysRevLett.109.230402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We refute the widely held belief that the quantum weak value necessarily pertains to weak measurements. To accomplish this, we use the transverse position of a beam as the detector for the conditioned von Neumann measurement of a system observable. For any coupling strength, any initial states, and any choice of conditioning, the averages of the detector position and momentum are completely described by the real parts of three generalized weak values in the joint Hilbert space. Higher-order detector moments also have similar weak value expansions. Using the Wigner distribution of the initial detector state, we find compact expressions for these weak values within the reduced system Hilbert space. As an application of the approach, we show that for any Hermite-Gauss mode of a paraxial beamlike detector these expressions reduce to the real and imaginary parts of a single system weak value plus an additional weak-value-like contribution that only affects the momentum shift. DOI: 10.1103/PhysRevLett.109.230402
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Weak measurements are universal
    Oreshkov, O
    Brun, TA
    PHYSICAL REVIEW LETTERS, 2005, 95 (11)
  • [2] A Survey of Universal Quantum von Neumann Architecture
    Liu, Yuan-Ting
    Wang, Kai
    Liu, Yuan-Dong
    Wang, Dong-Sheng
    ENTROPY, 2023, 25 (08)
  • [3] On von Neumann regular rings with weak comparability
    Kutami, M
    JOURNAL OF ALGEBRA, 2003, 265 (01) : 285 - 298
  • [4] On Von Neumann regular rings with weak comparability
    Kutami, M
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) : 3137 - 3147
  • [5] The von Neumann paradox in weak shock reflection
    Zakharian, AR
    Brio, M
    Hunter, JK
    Webb, GM
    JOURNAL OF FLUID MECHANICS, 2000, 422 : 193 - 205
  • [6] WEAK* TENSOR PRODUCTS FOR VON NEUMANN ALGEBRAS
    Wiersma, Matthew
    JOURNAL OF OPERATOR THEORY, 2016, 76 (02) : 271 - 283
  • [7] On the optimal certification of von Neumann measurements
    Lewandowska, Paulina
    Krawiec, Aleksandra
    Kukulski, Ryszard
    Pawela, Lukasz
    Puchala, Zbigniew
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [8] Weak measurements, weak values and entanglement
    Tollaksen, Jeff
    Ghoshal, Debabrata
    QUANTUM INFORMATION AND COMPUTATION V, 2007, 6573
  • [9] Storage and retrieval of von Neumann measurements
    Lewandowska, Paulina
    Kukulski, Ryszard
    Pawela, Lukasz
    Puchala, Zbigniew
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [10] On the optimal certification of von Neumann measurements
    Paulina Lewandowska
    Aleksandra Krawiec
    Ryszard Kukulski
    Łukasz Pawela
    Zbigniew Puchała
    Scientific Reports, 11