Existence and Uniqueness of Anti-fuzzy Ideal

被引:0
|
作者
Li, Min [1 ]
Feng, Yanping [2 ]
Han, Ying [3 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Math & Quantiat Econ, Dalian 116025, Peoples R China
[2] Liaoning Normal Univ, Sch Math, Dalian 116029, Peoples R China
[3] Chaoyang Teachers Coll, Dept Math & Comp, Dalian 122000, Peoples R China
关键词
Anti-fuzzy ideal; order-isomorphic; cut set;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let S subset of [0, 1] satisfying s = inf S is an element of S and C = {I-t/t is an element of S} he an ascending chain of ideals in commutative ring R This article presented and studied the following problem: (1) Whether is there an anti-fuzzy ideal mu of R such that m(R) = {mu(x)vertical bar x is an element of R} = S and C-mu = {mu(t)vertical bar is an element of mu(R)} = C ? (2) If the anti fuzzy ideal satisfying (1) exists, then whether is it unique ? We built theorems of existence and uniqueness of anti-fuzzy ideal.
引用
收藏
页码:101 / +
页数:2
相关论文
共 50 条
  • [1] On (λ, μ)-anti-fuzzy subgroups
    Feng, Yuming
    Yao, Bingxue
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [2] On (λ, μ)-anti-fuzzy subgroups
    Yuming Feng
    Bingxue Yao
    [J]. Journal of Inequalities and Applications, 2012
  • [3] Anti-Fuzzy子群的同态
    刘振宇
    刘永辉
    [J]. 洛阳理工学院学报(社会科学版), 2000, (04) : 27 - 30
  • [4] UP-ALGEBRAS CHARACTERIZED BY THEIR ANTI-FUZZY UP-IDEALS AND ANTI-FUZZY UP-SUBALGEBRAS
    Kaijae, Waraphorn
    Poungsumpao, Polatip
    Arayarangsi, Saranya
    Iampan, Aiyared
    [J]. ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, (36): : 667 - 692
  • [5] On (lambda, mu)-Anti-Fuzzy Subfields
    Feng, Yuming
    Yao, Bingxue
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2012, 15 (01): : 49 - 55
  • [6] Conormal Product for Intutionistic Anti-Fuzzy Graphs
    Kalaiarasi, K.
    Mahalakshmi, L.
    Kausar, Nasreen
    Islam, A. B. M. Saiful
    [J]. INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2023, 23 (01) : 79 - 90
  • [7] The Intuitionistic Anti-fuzzy Subgroup in Group G
    Li, De-yuan
    Zhang, Cheng-yi
    Ma, Sheng-quan
    [J]. FUZZY INFORMATION AND ENGINEERING, VOL 1, 2009, 54 : 145 - 151
  • [8] Anti-fuzzy local feature descriptor on images
    Tang G.
    [J]. Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2019, 46 (01): : 39 - 45
  • [9] GENERALIZED COMPLEX FUZZY AND ANTI-FUZZY H-v-SUBGROUPS
    Al Tahan, M.
    Davvaz, B.
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (05): : 628 - 642
  • [10] Existence and uniqueness of fuzzy ideals
    Saidi, FB
    Jaballah, A
    [J]. FUZZY SETS AND SYSTEMS, 2005, 149 (03) : 527 - 541