On relative geometric inequalities

被引:0
|
作者
Cerdán, A
Schnell, U
Gomis, SS
机构
[1] Univ Alicante, Dept Analisis Matemat, E-03080 Alicante, Spain
[2] Univ Appl Sci Zittau Gorlitz, Math Inst, D-02763 Zittau, Germany
来源
关键词
relative geometric inequalities; diameter; inradius; constant width; extremal sets;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be a subset of a convex, open, bounded, planar set G. Let P(E, G) be the relative perimeter of E (the length of the boundary of E contained in G). We obtain relative geometric inequalities comparing the relative perimeter of E with the relative diameter of E and with its relative inradius. We prove the existence of both extremal sets and maximizers for these inequalities and describe the geometric properties of them. We also give a characterization of planar convex sets of constant width in terms of the geometric constant corresponding to the relative diameter.
引用
收藏
页码:135 / 148
页数:14
相关论文
共 50 条
  • [1] RELATIVE GEOMETRIC INEQUALITIES FOR COMPACT, CONVEX SURFACES
    Cerdan, A.
    Miori, C.
    Schnell, U.
    Segura Gomis, S.
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2010, 13 (01): : 203 - 216
  • [2] Geometric relative Hardy inequalities and the discrete spectrum of Schrodinger operators on manifolds
    Akutagawa, Kazuo
    Kumura, Hironori
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 48 (1-2) : 67 - 88
  • [3] Geometric relative Hardy inequalities and the discrete spectrum of Schrödinger operators on manifolds
    Kazuo Akutagawa
    Hironori Kumura
    [J]. Calculus of Variations and Partial Differential Equations, 2013, 48 : 67 - 88
  • [4] Marginals of geometric inequalities
    Klartag, B.
    [J]. GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS, 2007, 1910 : 133 - 166
  • [5] GEOMETRIC HEIGHT INEQUALITIES
    Liu, Kefeng
    [J]. MATHEMATICAL RESEARCH LETTERS, 1996, 3 (05) : 693 - 702
  • [6] GEOMETRIC NEWTON INEQUALITIES
    Ni, James M.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (06) : 2609 - 2623
  • [7] Geometric inequalities for a simplex
    Yang, SG
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (04): : 727 - 733
  • [8] Geometric operator inequalities
    Andruchow, E
    Corach, G
    Stojanoff, D
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 258 : 295 - 310
  • [9] Integral geometric inequalities and valuations
    Wenxue Xu
    [J]. Geometriae Dedicata, 2020, 204 : 365 - 375
  • [10] ABP estimate and geometric inequalities
    Xia, Chao
    Zhang, Xiangwen
    [J]. COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2017, 25 (03) : 685 - 708