Self-integrated effects of 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite for promoting solar hydrogen generation

被引:135
|
作者
Du, Chun [1 ]
Yan, Bo [1 ]
Yang, Guowei [1 ]
机构
[1] Sun Yat Sen Univ, Nanotechnol Res Ctr, Sch Mat Sci & Engn, State Key Lab Optoelect Mat & Technol, Guangzhou 510275, Guangdong, Peoples R China
关键词
elf-integrated effects; 2D ZnIn2S4; Photocatalytic hydrogen production; Photocatalytic mechanism; TOTAL-ENERGY CALCULATIONS; PHOTOCATALYTIC APPLICATIONS; QUANTUM DOTS; WATER; HETEROSTRUCTURE; PROGRESS; PERFORMANCE; MONOLAYER; MICROSPHERES; EFFICIENCY;
D O I
10.1016/j.nanoen.2020.105031
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To maximize the performance of photocatalytic hydrogen production, photocatalysts need to be modified by various means such as energy band engineering and cocatalyst. Here, we propose a strategy of self-integrated effects for promoting photocatalysts performance. We firstly design and fabricate a 2D ZnIn2S4 and amorphous Mo2C nanoparticles composite photocatalyst by integrating heterojunction effect, cocatalyst effect and photothermal effect in one, and then demonstrate that self-integrated effects of Mo2C/ZnIn2S4 composite can greatly enhance photocatalytic hydrogen evolution. Based on in situ characterization techniques and theoretical calculations, we also establish that the photocatalytic mechanism of self-integrated effects consisting heterojunction effect, cocatalyst effect and photothermal effect is attributed to the increased absorption capacity, the enhanced carrier separation, the reduced Delta GH*, the more active sites, the increased electron density and the enhanced carrier's mobility. Especially, the contribution of photothermal effect can elevate temperature to accelerate the photocatalytic reaction and the photothermal contribution exceeds 100% under irradiation. Consequently, 2D ZnIn2S4/amorphous Mo2C nanoparticles has a remarkable photocatalytic hydrogen evolution rate respectively up to 22.11 and 40.93 mmol/g/h upon visible and AM1.5 illumination, promoting 164% and 156% for the available values reported of modified ZnIn2S4 photocatalysts so far. These findings suggest that the proposed self-integrated effects can greatly promote photocatalytic hydrogen production.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Synthesis of Mo2C/ZnIn2S4 composite and its efficient photocatalytic hydrogen evolution activity
    Liu C.
    Xie X.-Q.
    Fan P.-K.
    Li Y.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2022, 50 (08): : 1075 - 1083
  • [2] Facile Synthesis of 2D/2D Ti2C3/ZnIn2S4 Heterostructure for Enhanced Photocatalytic Hydrogen Generation
    Chen, Yongjuan
    Ge, Yanfang
    Wu, Chunling
    Tang, Hua
    Luo, Xiu
    He, Jiao
    Jiang, Liang
    Yan, Zhiying
    Wang, Jiaqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)
  • [3] 2D β-NiS as electron harvester anchors on 2D ZnIn2S4 for boosting photocatalytic hydrogen production
    Ding, Liang
    Li, Di
    Shen, Hongqiang
    Qiao, Xiaolei
    Shen, Hao
    Shi, Weidong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 853
  • [4] A 2D self-assembled MoS2/ZnIn2S4 heterostructure for efficient photocatalytic hydrogen evolution
    Li, Weijia
    Lin, Zhaoyong
    Yang, Guowei
    NANOSCALE, 2017, 9 (46) : 18290 - 18298
  • [5] Enhanced solar to hydrogen conversion via Ni addition to a few layered 2D/2D g-C3N4/ZnIn2S4 heterojunction
    Bhavani, Palagiri
    Ashwin Kishore, M. R.
    Praveen Kumar, D.
    Yoo, Jong Suk
    Park, Young-Kwon
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (27) : 16546 - 16558
  • [6] Constructing a 2D/2D heterojunction of MoSe2/ZnIn2S4 nanosheets for enhanced photocatalytic hydrogen evolution
    Feng, Ting
    Zhao, Kaili
    Li, Haiyan
    Wang, Wei
    Dong, Bohua
    Cao, Lixin
    CRYSTENGCOMM, 2021, 23 (13) : 2547 - 2555
  • [7] Novel 2D/2D/2D heterojunction of ZnIn2S4/g-C3N4/MoS2 for enhanced photocatalytic hydrogen evolution reaction
    Ning, Yunqi
    Lv, Daqi
    Tang, Qi
    Wang, Hanbing
    Hu, Xiaowan
    Cao, Yuming
    Yu, Shansheng
    Tian, Hongwei
    CERAMICS INTERNATIONAL, 2024, 50 (22) : 48692 - 48699
  • [8] Fabrication of 0D/2D amorphous NixB/ZnIn2S4 S-scheme for enhanced photocatalytic hydrogen evolution performance
    Wang, Xiaowei
    Liu, Ying
    Qianqian, Liu
    Zhang, Weiwei
    Shi, Lei
    OPTICAL MATERIALS, 2024, 154
  • [9] Reversible Stacking of 2D ZnIn2S4 Atomic Layers for Enhanced Photocatalytic Hydrogen Evolution
    Wu, Liqin
    Li, Mingjie
    Zhou, Biao
    Xu, Shuang
    Yuan, Ligang
    Wei, Jianwu
    Wang, Jiarong
    Zou, Shibing
    Xie, Weiguang
    Qiu, Yongcai
    Rao, Mumin
    Chen, Guangxu
    Ding, Liming
    Yan, Keyou
    SMALL, 2023, 19 (42)
  • [10] Benzyl alcohol oxidation and hydrogen generation over MoS2/ZnIn2S4 composite photocatalyst
    Zi-Han Chen
    Yue-Hua Li
    Ming-Yu Qi
    Zi-Rong Tang
    Yi-Jun Xu
    Research on Chemical Intermediates, 2022, 48 : 1 - 12