A class of Fourier integral operators with complex phase related to the Gevrey classes

被引:4
|
作者
Nishitani, Tatsuo [1 ]
Tamura, Mitsuji [2 ]
机构
[1] Osaka Univ, Dept Math, Toyonaka, Osaka 5600043, Japan
[2] Tokyo Univ Sci, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
关键词
Cauchy Problem; Phase Function; Analytic Extension; Pseudo Differential Operator; Fourier Integral Operator;
D O I
10.1007/s11868-010-0014-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss about Fourier integral operators with complex phase functions belonging to S-rho, delta(kappa), 0 < delta < rho <= 1, 0 < kappa < rho - delta where the positivity of imaginary part of the phase functions is not required. In particular we prove composition formulae for 0 and 1 quantization of Fourier integral operators with phase phi and -phi. These results are applied to reduce the Cauchy problem for noneffectively hyperbolic operators in the Gevrey classes to the Cauchy problem in Sobolev spaces.
引用
收藏
页码:255 / 292
页数:38
相关论文
共 50 条