Solution of a nonlinear Schrodinger equation in the form of two-phase freak waves

被引:13
|
作者
Smirnov, A. O. [1 ]
机构
[1] St Petersburg State Univ Aerosp Instrumentat, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
rogue wave; freak wave; nonlinear Schrodinger equation; theta function; reduction; covering; ROGUE WAVES; ELLIPTIC SOLUTIONS; MELNIKOV ANALYSIS; NLS EQUATION; CHAOS; SOLITON;
D O I
10.1007/s11232-012-0122-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a family of two-gap solutions of the focusing nonlinear Schrodinger equation and derive a condition under which the solutions behave as the so-called freak waves located at the nodes of a two-dimensional lattice. We also study how the lattice parameters depend on the parameters of the spectral curve.
引用
收藏
页码:1403 / 1416
页数:14
相关论文
共 50 条
  • [1] Solution of a nonlinear Schrödinger equation in the form of two-phase freak waves
    A. O. Smirnov
    [J]. Theoretical and Mathematical Physics, 2012, 173 : 1403 - 1416
  • [2] Numerical simulation of freak waves based on the four-order nonlinear Schrodinger equation
    Zhang Yun-qiu
    Zhang Ning-chuan
    Pei Yu-guo
    [J]. CHINA OCEAN ENGINEERING, 2007, 21 (02) : 207 - 214
  • [3] Freak Wave Prediction Based on the Nonlinear Schrodinger Equation
    Wang, Xiao
    Gao, Yuan-bo
    Wu, Ming
    Cai, Feng
    Liu, Xiao-guang
    [J]. JOURNAL OF COASTAL RESEARCH, 2020, : 310 - 318
  • [4] Nonlinear waves in two-phase systems
    Ramazanov, TK
    [J]. INTERNATIONAL APPLIED MECHANICS, 1995, 31 (09) : 719 - 726
  • [5] Cylindrical freak waves in a non-Maxwellian dusty bulk-sheath plasma: An approximate solution for the cylindrical nonlinear Schrodinger equation
    El-Tantawy, S. A.
    Elgendy, A. T.
    Ismail, S.
    [J]. PHYSICS LETTERS A, 2017, 381 (40) : 3465 - 3471
  • [6] Nonlinear waves in two-phase piezoelectric powders
    Rushchitskii, YY
    Khotenko, IN
    [J]. INTERNATIONAL APPLIED MECHANICS, 1998, 34 (08) : 746 - 754
  • [7] On the solution of the nonlinear Schrodinger equation
    Zayed, EME
    Zedan, HA
    [J]. CHAOS SOLITONS & FRACTALS, 2003, 16 (01) : 133 - 145
  • [8] Nonlinear waves in two-phase piezoelectric powders
    Ya. Ya. Rushchitskii
    L N. Khotenko
    [J]. International Applied Mechanics, 1998, 34 : 746 - 754
  • [9] Hamiltonian form of the modified nonlinear Schrodinger equation for gravity waves on arbitrary depth
    Gramstad, Odin
    Trulsen, Karsten
    [J]. JOURNAL OF FLUID MECHANICS, 2011, 670 : 404 - 426
  • [10] NONLINEAR SCHRODINGER EQUATION FOR LANGMUIR WAVES
    FRIED, BD
    ICHIKAWA, Y
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 34 (04) : 1073 - 1082