Canonical representation of the Yager's classes of fuzzy implications

被引:12
|
作者
Reiser, R. H. S. [1 ]
Bedregal, B. [2 ]
Santiago, R. H. N. [2 ]
Amaral, M. D. [3 ]
机构
[1] UFPEL CDTEC PPGC, BR-96001970 Pelotas, RS, Brazil
[2] UFRN DIMAP PPGC, BR-59072970 Natal, RN, Brazil
[3] UCPEL CP PPGINF, BR-96010000 Pelotas, RS, Brazil
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2013年 / 32卷 / 03期
关键词
Interval-valued fuzzy logic; Interval-valued fuzzy implications; Yager's classes of implications; f-Generated implications; g-Generated implications; T-NORMS; NEGATIONS;
D O I
10.1007/s40314-013-0029-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this work is to study an interval extension of the Yager's classes of implications based on the canonical constructor. Focused on the Yager implication, such construction preserves similar and extra properties of fuzzy implications, also aggregating the correctness and optimality criteria.
引用
收藏
页码:401 / 412
页数:12
相关论文
共 50 条
  • [1] Canonical representation of the Yager’s classes of fuzzy implications
    R. H. S. Reiser
    B. Bedregal
    R. H. N. Santiago
    M. D. Amaral
    Computational and Applied Mathematics, 2013, 32 : 401 - 412
  • [2] Yager's classes of fuzzy implications: Some properties and intersections
    Baczynski, Michal
    Jayaram, Balasubramaniam
    KYBERNETIKA, 2007, 43 (02) : 157 - 182
  • [3] Bandler-Kohout Subproduct With Yager's Classes of Fuzzy Implications
    Mandal, Sayantan
    Jayaram, Balasubramaniam
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2014, 22 (03) : 469 - 482
  • [4] On the characterization of Yager's implications
    Massanet, Sebastia
    Torrens, Joan
    INFORMATION SCIENCES, 2012, 201 : 1 - 18
  • [5] An extension of Yager's implications
    Massanet, S.
    Torrens, J.
    PROCEEDINGS OF THE 8TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-13), 2013, 32 : 597 - 604
  • [6] On a canonical representation of fuzzy numbers
    Delgado, M
    Vila, MA
    Voxman, W
    FUZZY SETS AND SYSTEMS, 1998, 93 (01) : 125 - 135
  • [7] On Yager's theory of bags and fuzzy bags
    Chakrabarty, K
    Biswas, R
    Nanda, S
    COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1999, 18 (01): : 1 - 17
  • [8] On the Characterization of a Family of Generalized Yager's Implications
    Fernandez-Peralta, Raquel
    Massanet, Sebastia
    INFORMATION PROCESSING AND MANAGEMENT OF UNCERTAINTY IN KNOWLEDGE-BASED SYSTEMS: THEORY AND FOUNDATIONS, IPMU 2018, PT I, 2018, 853 : 636 - 648
  • [9] On Some New Generalizations of Yager's Implications
    Zhang, Feng-Xia
    Zhang, Xing-Fang
    QUANTITATIVE LOGIC AND SOFT COMPUTING 2016, 2017, 510 : 587 - 596
  • [10] A class of implications related to Yager's f-implications
    Hlinena, Dana
    Kalina, Martin
    Kral', Pavol
    INFORMATION SCIENCES, 2014, 260 : 171 - 184