Reversible lithium insertion into Na2Ti6O13 structure

被引:79
|
作者
Dominko, R
Baudrin, E
Umek, P
Arcon, D
Gaberscek, M
Jamnik, J
机构
[1] Natl Inst Chem, Lab Mat Electrochem, SI-1001 Ljubljana, Slovenia
[2] CNRS, UMR 6007, Lab Reactivite & Chim Solides, F-80039 Amiens, France
[3] Jozef Stefan Inst, SI-1000 Ljubljana, Slovenia
关键词
Na2Ti6O13; titanium oxide; anode; lithium insertion; Li-ion batteries;
D O I
10.1016/j.elecom.2006.02.017
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Pure Na2Ti6O13 phase was successfully prepared from partially washed (Na,H)-Ti-O nanotubes and used as an insertion material for lithium ions. Results show that the structure can accommodate upto 3 mol of lithium per I mol of Na2Ti6O13. Accommodation of 0.5 mol of lithium per one titanium atom corresponds to the partial reduction of Ti4+ to Ti3+ and occurs several 100s of millivolts lower than typically encountered for titanium in an octahedral oxygen environment such as Li4Ti5O12. Lithium insertion into this phase was evaluated using especially in situ X-ray. Lithium insertion into Na2Ti6O13 phase includes three domains corresponding to two solid-solutions and a biphasic transition in the potential range between 1.5 V and 1.0 V vs. lithium. The process is very reversible so that after reoxidation the structure is completely preserved. Capacity fading observed during the cycling is explained by parasitic reactions attributed to a catalytic effect of the exposed bare surface on the electrolyte degradation. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:673 / 677
页数:5
相关论文
共 50 条
  • [1] Alkali hexatitanates -: A2Ti6O13 (A = Na, K) as host structure for reversible lithium insertion
    Dominko, R.
    Dupont, L.
    Gaberscek, M.
    Jamnik, J.
    Baudrin, E.
    JOURNAL OF POWER SOURCES, 2007, 174 (02) : 1172 - 1176
  • [2] Synthesis, structure and electrochemical Li insertion behaviour of Li2Ti6O13 with the Na2Ti6O13 tunnel-structure
    Perez-Flores, J. C.
    Kuhn, A.
    Garcia-Alvarado, F.
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1378 - 1385
  • [3] Vibrational and electronic properties of Na2Ti6O13
    Silva, Fabio Lacerda Resende e
    Ribeiro, Guilherme Almeida Silva
    Balzuweit, Karla
    Bantignies, Jean-Louis
    Moreira, Roberto Luiz
    Righi, Ariete
    JOURNAL OF RAMAN SPECTROSCOPY, 2023, 54 (05) : 551 - 561
  • [4] Comprehensive investigation of the lithium insertion mechanism of the Na2Ti6O13 anode material for Li-ion batteries
    Kuhn, Alois
    Carlos Perez-Flores, Juan
    Hoelzel, Markus
    Baehtz, Carsten
    Sobrados, Isabel
    Sanz, Jesus
    Garcia-Alvarado, Flaviano
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (02) : 443 - 455
  • [5] On the Mechanism of Lithium Insertion into A2Ti6O13 (A = Na, Li)
    Perez-Flores, J. C.
    Hoelzel, M.
    Kuhn, A.
    Garcia-Alvarado, F.
    RECHARGEABLE LITHIUM AND LITHIUM ION BATTERIES, 2012, 41 (41): : 195 - 206
  • [6] Silver nanoparticles incorporated into Na2Ti6O13 microfibers
    Rodriguez-Gonzalez, V.
    Juarez-Ramirez, I.
    Zanella, R.
    Zarazua, M. E.
    Torres-Martinez, L. M.
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2008, 9 (06): : 601 - 605
  • [7] STRUCTURES OF NA2TI6O13 AND RB2TI6O13 AND ALKALI METAL TITANATES
    ANDERSSON, S
    WADSLEY, AD
    ACTA CRYSTALLOGRAPHICA, 1962, 15 (03): : 194 - &
  • [8] CRYSTAL STRUCTURE OF NA2TI7O15 AN ORDERED INTERGROWTH OF NA2TI6O13 AND NA2TI8O17
    WADSLEY, AD
    MUMME, WG
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1968, B 24 : 392 - &
  • [9] Lithium- and sodium-ion transport properties of Li2Ti6O13, Na2Ti6O13 and Li2Sn6O13
    Zulueta, Yohandys A.
    Geerlings, Paul
    Tielens, Frederik
    Minh Tho Nguyen
    JOURNAL OF SOLID STATE CHEMISTRY, 2019, 279
  • [10] Synthesis and characterization of Na2Ti6O13 and Na2Ti6O13/Na2Ti3O7 sodium titanates with nanorod-like structure as negative electrode materials for sodium-ion batteries
    Cech, Ondrej
    Castkova, Klara
    Chladil, Ladislav
    Dohnal, Premysl
    Cudek, Pavel
    Libich, Jiri
    Vanysek, Petr
    JOURNAL OF ENERGY STORAGE, 2017, 14 : 391 - 398